Заземление экрана контрольного кабеля нормы


Заземление экранов контрольных кабелей | Полезные статьи

Заземление экранов контрольных кабелей — одно из обязательных мероприятий, проводимых при конструировании электростанций и подстанций, промышленно-производственных и иных типов объектов, где предполагается эксплуатация высоковольтного оборудования (или множества электроприборов, совокупная мощность которых может достигать десятки или сотни кВт). Если предположить существование иерархии проводников (допустим, по мощности, виду передаваемых сигналов и области применения), то контрольный кабель будет расположен где-то между силовыми и информационными типами. Данные кабельные изделия служат для управления подконтрольными объектами и передачи информации (на пульт оператора) об их состоянии. Кабели применяются, к примеру, для подключения к ним различной электроаппаратуры, электромеханического оборудования, устройств релейной защиты, сигнализации и т. д.

Имеющиеся в системе электрические цепи, помимо высоковольтных цепей, именуются вторичными. Сюда же относятся цепи, построенные из контрольных кабелей.

Цели устройства заземления

Как и в случае с любыми другими типами проводников, заземление контрольного кабеля производится с целью защиты оборудования от всевозможных помех, возникающих по ряду причин — удары молний, короткие замыкания, разряды статического электричества, работа радиопередающих устройств и т. д. Из вышесказанного также можно сделать вывод, что контрольный кабель используется, в том числе, для работы электронного оборудования. Любая подобная техника (и более всего — микропроцессорная), как известно, очень чувствительна к электромагнитным помехам (ЭП). Таким образом, заземление экранов контрольных кабелей также необходимо для защиты электронного оборудования от ЭП.

Но для чего заземлять экран, ведь данный компонент проводника, как известно, и так служит для препятствования проникновения электромагнитных помех в токопроводящие жилы? Но, как показывает практика, одно лишь экранирование не является эффективным способом защиты от ЭП.

Нормы заземления экранов контрольных кабелей и принцип работы

Установленные нормы заземления экранов контрольных кабелей допускают заземлять проводник с одного или с двух концов. Причем одностороннее заземление может быть произведено со стороны источника напряжения или со стороны приемника (прибора-потребителя электроэнергии). И тот и другой способ монтажа заземления экранов контрольных кабелей имеет свои преимущества и недостатки. Рассмотрим положительные и отрицательные моменты обоих способов в ситуации с возникновением токов короткого замыкания.

В случае с односторонним заземлением:

•    Заземление контрольных экранированных кабелей с одной из сторон исключает возможность появления тока (в нормальном режиме работы) при возникновении разности потенциалов на концах экрана, т. к. он (ток) будет уходить в землю. Это, в свою очередь, предотвращает нагрев кабеля и его повреждение.
•    Однако при таком способе монтажа заземления экранов контрольных кабелей в случае возникновения токов короткого замыкания разность потенциалов на концах экрана может достигать значений в несколько десятков/сотен/тысяч вольт (зависит от напряжения), что очень опасно не только для самого кабеля, но и всего оборудования, к которому он подключен. Т. е. подобное заземление контрольного кабеля ГОСТами и стандартами МЭК не предусматривается.

В случае с двухсторонним заземлением контрольного кабеля проблем с разностью потенциалов не наблюдаются. Но и здесь существует свой недостаток — такая система, по сути, является замкнутой. Это значит, что при возникновении короткого замыкания или, например, вследствие ударов молнии очень высока вероятность термического повреждения всего кабеля. Однако при грамотном построении системы с двухсторонним заземлением контрольных экранированных кабелей всего этого можно избежать.

Для защиты экрана могут применяться, т. н. замкнутые системы заземления с большим числом связей. Еще один эффективный способ — использование параллельных заземляющих проводников. В обоих случаях сверхвысокие токи буду равномерно распределены по всем заземляющим кабелям, что устранит возможность его нагрева и повреждения.

Большой выбор контрольных кабелей  представлен на сайте компании "Кабель.РФ®".  Ознакомившись с описанием продукции, вы можете сделать выбор самостоятельно или обратиться к специалисту компании, который грамотно проконсультирует вас по вопросам цены и качества.

Советы по экранированию и заземлению в промышленной автоматизации | SMAR

Найдите свой продукт: По FunctionAll FunctionsAbsolute давления TransmittersAccessoriesActuatorsAsset ManagementConcentration TransmittersConfiguration SoftwareControl SystemsControllersDensity TransmittersDidactic Pilot PlantDifferential TransmittersDiscrete давления удаленного ввода / вывода устройства - PROFIBUS PADP / PA Profibus CouplerFieldbus Сеть AnalyzerFieldbus Сегмент ProtectFlow TransmittersFoundation Межсетевой дискретного ввода / вывода DevicesGage давления TransmittersHigh Статическое давление TransmittersHuman машина InterfaceIndicatorsInterfacesIsolatorJunction BoxLevel TransmittersLinking Приборы и BridgesMaintenance и Инструмент для диагностики - 20 мAModbusOPCProfibusWirelessHART по имени

.

Экран кабеля заземлен только с одного конца

На рисунке 4 показаны объединенные результаты двух моделей соединения. Эффект щита САУ - это именно то, что предлагает модель RLC; то есть экран SPG представляет собой фильтр нижних частот для магнитных полей и фильтр верхних частот для электрических полей. Обе точки излома фильтров находятся на частоте, соответствующей длине экрана, составляющей четверть длины волны. Таким образом, щит САУ вовсе не щит. Эффекты экранирования находятся на несколько порядков ниже этих кривых.Последним моментом является то, что

SPG резонирует, так что индуцированный сигнал усиливается, а не ослабляется на резонансной частоте экрана. Эта модель является низкочастотной, однако в нее включены все соответствующие параметры.

Множество примечаний к приложениям и статей на эту тему, которые рекомендуют заземлять экран на одном конце, только искажают физику экранирования и ошибочно приписывают заземляющий контур экрану, где сама цепь была частью исходного контура заземления.Экранирование кабеля и заземляющие контуры должны быть разъединены. Заземление экрана на обоих концах ослабляет связь с экранированными проводами примерно на соотношение тока нагрузки и тока экрана, SA ≈ Iload / Ishield ≈ ZT · l / 2 · Zload,

, где ZT - передаточное сопротивление экрана, l - длина, а Zload - сопротивление нагрузки обеих нагрузок. Например, экран кабеля с сопротивлением постоянному току (и низкочастотным передаточным сопротивлением, ZT · l = Rdc) 1 Ом и сопротивлением нагрузки 1 кОм будет иметь низкочастотное затухание экрана примерно 5 · 10-4 или 66 дБ.

Экраны должны быть «прикреплены» к коробкам на концах соответствующих кабелей, а не заземления, заземления здания или чего-либо еще. Военные стандарты, такие как Mil-Std-188-124B и FAA, все правильно понимают. Пора и всем остальным.

Ниже приводится список очень плохих советов из авторитетных источников:

(1) EE Times, «Заземление системы управления - Часть 2: Проводка заземления, заземление экрана и заземление источника питания, заземление экрана», Роджер Хоуп, Дэйв Харролд и Дэвид Браун, 15.07.2008: Правильное заземление экрана путь заключается в заземлении экрана только с одного конца.

(2) EDN, «Заземление и экранирование: не подходит всем», Мартин Роу, старший технический редактор - 1 августа 2001 г .; Никогда не подключайте экран к земле с обоих концов. Это создаст контур заземления.

(3) Analog Devices, Аналоговый диалог 17-1, 1983, Алан Рич, «Экранирование и защита, как исключить помехи типа помех, что делать и зачем это делать - рациональный подход»: не соединяйте оба концы щита заземлить.

(4) Википедия, Экранированный кабель: Обычный метод подключения экранированных кабелей - заземлить только исходный конец экрана, чтобы избежать контуров заземления.Википедия !! ??

(5) LTC486 Data Sheet: дополнительные экраны вокруг витой пары помогают уменьшить нежелательный шум и подключены к GND на одном конце.

(6) Maxim Integrated, TUTORIAL 2045, Общие сведения о синфазных сигналах: для любой экранированной пары (пар), несущей симметричные сигналы, вы должны подключить экран к земле на одном конце, обычно на приемном конце.

(7) web www.bobtech.ro, Руководство по подключению для сетей RS-485, Примечание по применению 001, Заземление: Если используется экранированная витая пара…, экран должен быть подключен к заземлению только на одном конце.(8) B & B Electronics, RS-422 И RS-485 ПРИЛОЖЕНИЯ ЭЛЕКТРОННАЯ КНИГА, Экранирование: Если используется экранированный кабель, экран должен быть заземлен только с одной стороны, предпочтительно заземлять.

(9) Alpha Wire, www.newark.com/pdfs/techarticles/alphawire/ USC.pdf, Общие сведения об экранированном кабеле: заземлите кабель с одного конца. Это исключает возможность возникновения шумовых контуров заземления.

(10) eeeic.eu/proc/papers/ 55. pdf, Технологический университет Котбуса, Германия и Технологический университет Вроцлава, Польша, Анке Фребель, «Экранирование кабеля для минимизации электромагнитных помех», III.ЗАЗЕМЛЕНИЕ ЭКРАНА КАБЕЛЯ: Если для соединения двух систем используется экранированный кабель, экран должен быть подключен к одному заземлению. Чтобы предотвратить проникновение электромагнитной энергии через экран, внешняя поверхность экрана должна быть заземлена. На низком уровне

частот для возбуждения электрического поля более эффективно заземлять оба конца, тогда как для возбуждения H-поля следует отдавать предпочтение заземлению одного конца, так как это устраняет образование токовой петли между кабелем и заземляющей пластиной.На высоких частотах схемы с заземлением на обоих концах избегают резонансов для возбуждений E-поля и H-поля. На практике часто предпочтительнее одно заземляющее соединение, поскольку это позволяет избежать контуров заземления. Однако для коротких кабелей на низких частотах напряжения, индуцированные электромагнитными помехами на обоих концах коаксиального кабеля, становятся почти одинаковыми, и один конец заземляется

необходим как для возбуждений E-поля, так и для возбуждений H-поля. [Я добавил это, чтобы показать, насколько люди сбиты с толку по этому поводу. Автор попытался написать о защите, но только продемонстрировал свое незнание предмета.Он даже поменял местами экранирование электрического и вертикального полей.]

(11) www.calex.com/pdf/4ground_shield.pdf, Эта статья была написана для CALEX г-ном Ральфом Моррисоном, президентом INSTRUM и автором книги «Методы заземления и экранирования в приборостроении», опубликованной Wiley; Заземление и экранирование: экран входного кабеля нельзя заземлять более одного раза. [Только с цифрами, г-н Моррисон показывает другой конец экрана кабеля, подключенный к земле

через резистор 10 МОм.«Из пасти победы…»]

.

Заземление экрана - Dataforth

Экранирование кабеля используется в первую очередь для минимизации или устранения емкостной связи. помехи от электрических полей. При правильной реализации его также можно использовать минимизировать индуктивную связь от магнитных полей. Экранирование только эффективно от электрических полей, если он обеспечивает путь к земле с низким импедансом. Плавающий экран не обеспечивает защиты от помех. Заземление щитов может быть спорный вопрос, потому что есть несколько способов сделать это.Правильно место для подключения электростатического экрана находится в опорном потенциале схемы содержится внутри щита. Этот момент будет варьироваться в зависимости от того, источник и приемник либо заземлены, либо один из них плавающий.

Блок-схемы модулей SCM5B, которые можно найти в каталоге продукции, показывают опорный потенциал для входного сигнала (т.е. IN). Этот момент обычно также опорный потенциал схемы на стороне поля (обозначен символом заземления).Поскольку все модули SCM5B имеют высокий уровень изоляции между схемы на стороне поля и на стороне системы, соединения на стороне поля эффективно дифференциальные входы или выходы.

При использовании датчиков без подключения экрана к датчику подключите сигнальный Линия щит с опорным сигналом потенциала входного SCM5B (рисунок 1). Некоторые данные системы сбора данных требуют, чтобы датчик был заземлен. Это может быть найдено при использовании термопар или датчиков RTD, которые предназначены для вставки в защитные гильзы.В этой конфигурации модуль SCM5B обеспечивает изоляцию необходимо для устранения деградации сигнала из-за разницы потенциалов заземления и токи контура заземления. При наличии экрана кабеля его следует заземлить. на датчике (рисунок 2). Подключите экран к земле как можно ближе к земле. возможно подключение датчика к земле, чтобы избежать разницы потенциалов между заземлением сигнала и экрана. Эта разность потенциалов может вызывать шум на сигнальных линиях.

.

Заземление оболочки кабеля сверхвысокого / высокого напряжения | Электротехнические примечания и статьи

Заземление оболочки кабеля сверхвысокого / высокого напряжения:

Введение:

  • В городских районах подземные кабели высокого напряжения обычно используются для передачи и распределения электроэнергии. Такие высоковольтные кабели имеют металлические оболочки или экраны, окружающие проводники, и / или броню и металлические провода, окружающие кабели. Во время замыканий на землю, применяемых к напрямую заземленным системам, ожидается, что эти металлические пути будут нести значительную часть общего тока замыкания, который в противном случае протекал бы через общую массу земли, возвращаясь к нейтрали системы.Эти альтернативные пути возврата необходимо учитывать при определении степени повышения потенциала сети на электростанции из-за замыканий на землю.
  • Для безопасности и надежной работы экраны и металлические оболочки силовых кабелей должны быть заземлены. Без заземления экраны работали бы при потенциале, значительно превышающем уровень земли. Таким образом, они были бы опасными для прикосновения и вызывали бы быстрое разрушение оболочки или другого материала между экраном и землей.Это вызвано емкостным зарядным током изоляции кабеля, который составляет порядка 1 мА / фут длины проводника.
  • Этот ток обычно течет на промышленной частоте между проводником и заземляющим электродом кабеля, обычно экраном. Кроме того, экран или металлическая оболочка обеспечивают путь возврата при повреждении в случае нарушения изоляции, обеспечивая быстрое срабатывание защитных устройств.
  • Чтобы уменьшить циркулирующий ток и разность электрических потенциалов между оболочками одножильных трехфазных кабелей, оболочка заземляется и закрепляется на одном или обоих концах кабелей.Если кабель длинный, необходимо выполнить двойное соединение, что приведет к возникновению циркулирующих токов и увеличению общих потерь мощности. Повышение сопротивления оболочки за счет уменьшения ее поперечного сечения и увеличения удельного сопротивления может снизить его почти до уровня потерь в сердечнике.
  • Однако в случае замыкания на землю значительная часть тока короткого замыкания протекает через повышенное сопротивление оболочки, создавая в оболочках гораздо более высокую мощность, чем в неисправном сердечнике. Простое решение: стержень проводника, закопанный в почву над или под кабелем, может отвести эту мощность от оплетки.

Экран кабеля:

(1) Назначение экрана кабеля:

  • Экран кабеля контролирует напряжение электрического поля в изоляции кабеля.
  • Экран кабеля Обеспечивает обратный путь для нейтрали кабеля и тока повреждения.
  • Если экран заземлен с двух сторон, он обеспечивает защиту от электромагнитного излучения.
  • В целях безопасности объединить опасное высокое напряжение с потенциалом земли.

(2) Назначение экранов кабелей на обоих концах:

  • Потери электроэнергии в кабельной цепи зависят от токов, протекающих в металлических оболочках кабелей, поэтому, уменьшая токи, протекающие в металлической оболочке с помощью различных методов соединения, мы можем увеличить допустимую нагрузку по току (допустимую нагрузку) кабель.
  • Он обеспечивает обратный путь тока короткого замыкания с низким импедансом и обеспечивает нейтральную точку для цепи.
  • Обеспечивает защиту от электромагнитного поля.

(3) Наведенное напряжение и циркулирующий ток в экране кабеля:

  • Электромагнитная связь между сердечником и экраном Электромагнитный экран.
  • Если экран кабеля скреплен в одной точке, электрическая цепь отсутствует, и mmf генерирует напряжение.
  • Если экран кабеля соединен с обоих концов, МДС вызовет протекание циркулирующего тока, если есть электрическая непрерывность.
  • Циркулирующий ток создает противоположное магнитное поле.
  • Следует использовать подходящий метод соединения, чтобы соответствовать пределу постоянного напряжения и поддерживать циркулирующий ток на приемлемом уровне.

Метод прокладки кабеля:

  • Три одножильных кабеля в трехфазной цепи могут быть размещены в различных формах. Типичные образования включают трилистники (треугольные) и плоские образования.

(1) Формирование трилистника:


  • Для минимизации электромеханических сил между кабелями в условиях короткого замыкания и предотвращения вихретокового нагрева в близлежащих стальных конструкциях из-за магнитных полей, создаваемых токами нагрузки, три одножильных кабеля, содержащие три фазы трехфазного кабеля. Фазовая цепь всегда зажата в форме «трилистника».
  • Преимущество:
  1. Этот тип формирования сводит к минимуму циркулирующие токи оболочки, индуцируемые магнитным потоком, связывающим жилы кабеля и металлическую оболочку или экраны из медной проволоки.
  2. Эта конфигурация обычно используется для кабелей низкого напряжения (от 33 до 132 кВ) и с проводниками меньшего диаметра.
  1. Форма трилистника не подходит для отвода тепла, потому что существует заметный эффект взаимного нагрева трех кабелей.
  2. Накопленное тепло в кабелях и кабельной траншее снижает номинальные характеристики кабеля и ускоряет старение кабеля.

(2) Плоская формация:

  • Это наиболее распространенный метод прокладки кабеля LT.
  • Это формирование подходит для отвода тепла и увеличения номинальных характеристик кабеля.
  • Выбор формации полностью зависит от нескольких факторов, таких как метод соединения экрана, площадь проводника и доступное пространство для установки.

Тип сердечника и наведенное напряжение:

(1) Трехжильный кабель:

  • Для низковольтного оборудования, обычно ниже 11 кВ.
  • Хорошо сбалансированное магнитное поле от трех фаз.
  • Сумма индуцированных напряжений от трех фаз равна нулю по всей длине кабеля.
  • Экран кабеля должен быть заземлен с обоих концов
  • Практически нулевое наведенное напряжение или циркулирующий ток в установившемся режиме.

(2) Одножильный кабель:

  • Для высоковольтного применения, обычно от 11 кВ и выше.
  • В одножильных кабелях не используется ферромагнитный материал для экрана, оболочки и брони.
  • Наведенное напряжение в основном создается токами сердечника в его собственной фазе и двух других фазах. Если кабели проложены компактно и симметрично, наведенное в экране напряжение может быть минимизировано.
  • Для одножильных кабелей следует использовать подходящий метод соединения экрана, чтобы предотвратить чрезмерный циркулирующий ток и высокое индуцированное постоянное напряжение.высокое напряжение.

Принадлежности для приклеивания оболочки кабеля HT:

(1) Функция Link Box?

  • Link Box электрически и механически является одним из неотъемлемых аксессуаров подземной системы кабельного соединения высокого напряжения над землей, связанной с системами силовых кабелей из сшитого полиэтилена высокого напряжения.
  • Соединительные коробки используются с кабельными соединениями и концевыми муфтами, чтобы обеспечить легкий доступ к разрывам экрана в целях тестирования и ограничить нарастание напряжения на оболочке.
  • Молния, токи короткого замыкания и операции переключения могут вызвать перенапряжение на оболочке кабеля.Соединительная коробка оптимизирует управление потерями в экране кабеля на кабелях, заземленных с обеих сторон.
  • В HT Cable система соединения спроектирована таким образом, что оболочки кабеля склеиваются и заземляются или с помощью SVL таким образом, чтобы устранить или уменьшить циркулирующие токи в оболочке.
  • Соединительные коробки
  • используются с кабельными соединениями и заделками, чтобы обеспечить легкий доступ к разрывам экрана в целях тестирования и ограничить нарастание напряжения на оболочке. Соединительная коробка является частью системы соединения, которая необходима для повышения пропускной способности по току и защиты человека.

(2) Ограничители напряжения оболочки (SVL) (ограничители перенапряжения):

  • SVL - это защитное устройство для ограничения наведенных напряжений, возникающих в кабельной системе из-за короткого замыкания.
  • Необходимо установить SVL между металлическим экраном и землей внутри соединительной коробки. Разделение экрана в соединении силового кабеля (изолированное соединение) будет защищено от возможных повреждений в результате наведенных напряжений, вызванных коротким замыканием / пробоем.

Тип соединения оболочки для кабеля HT:

Обычно существует три типа соединения экрана кабеля LT / HT.

(1) Одноточечное соединение.

  1. Односторонняя одноточечная система склеивания.
  2. Сплит-система с одноточечным соединением.

(2) Система склеивания на обоих концах

(3) Система с поперечным соединением

(1) Система с одноточечным соединением:

(A) Односторонняя односторонняя система крепления:

  • Система является одноточечной связью, если ее расположение таково, что оболочки кабеля не обеспечивают пути прохождения циркулирующих токов или токов внешнего замыкания.
  • Это простейшая форма специального склеивания. Оболочки трех участков кабеля соединяются и заземляются в одной точке только по их длине . Во всех других точках между оболочкой и землей и между экранами соседних фаз кабельной цепи будет напряжение, которое будет максимальным в самой дальней точке от заземления.
  • Это индуцированное напряжение пропорционально длине кабеля и току. Одноточечное соединение может использоваться только для ограниченной длины маршрута, но в целом принятый потенциал напряжения экрана ограничивает длину

  • Следовательно, оболочки должны быть должным образом изолированы от земли.Поскольку нет замкнутой цепи оболочки, за исключением ограничителя напряжения оболочки, ток обычно не течет в продольном направлении вдоль оболочки, и потери тока циркуляции оболочки не возникают.
  • Обрыв в экране кабеля, отсутствие циркулирующего тока.
  • Нулевое напряжение на заземленном конце, постоянное напряжение на незаземленном конце.
  • Дополнительный провод заземления с изоляцией из ПВХ, необходимый для обеспечения пути тока короткого замыкания, если возврат с земли нежелателен, например, в угольной шахте.
  • SVL устанавливается на незаземленном конце для защиты изоляции кабеля при возникновении неисправностей.
  • Наведенное напряжение, пропорциональное длине кабеля и току, протекающему по кабелю.
  • Нулевое напряжение относительно напряжения сети заземления на заземленном конце, постоянное напряжение на незаземленном конце.
  • Циркуляционный ток в проводе заземления не имеет значения, так как магнитные поля от фаз частично сбалансированы.
  • Величина постоянного напряжения зависит от величины тока, протекающего в сердечнике, намного выше, если есть замыкание на землю.
  • Высокое напряжение на незаземленном конце может вызвать искрение и повредить внешнюю оболочку из ПВХ.
  • Напряжение на экране во время повреждения также зависит от состояния заземления.

Постоянное напряжение на незаземленном конце при замыкании на землю .

  • Во время замыкания на землю в энергосистеме ток нулевой последовательности, переносимый проводниками кабеля, может вернуться по любым доступным внешним путям. Замыкание на землю в непосредственной близости от кабеля может вызвать большую разницу в повышении потенциала земли между двумя концами кабельной системы, создавая опасность для персонала и оборудования.
  • По этой причине для установки одноточечного кабеля требуется параллельный заземляющий провод , заземленный на обоих концах кабельной трассы и установленный очень близко к проводникам кабеля, для передачи тока короткого замыкания во время замыканий на землю и ограничения роста напряжения. оболочки при замыканиях на землю до приемлемого уровня.
  • Параллельный провод заземления обычно изолирован во избежание коррозии и переставляется, если кабели не перекладываются, чтобы избежать циркулирующих токов и потерь в нормальных условиях эксплуатации.
  • Напряжение на незаземленном конце при замыкании на землю состоит из двух составляющих напряжения. Наведенное напряжение из-за тока короткого замыкания в сердечнике.

Преимущество:

  • Нет циркулирующего тока.
  • Нет нагрева экрана кабеля.
  • Экономичный.

Недостаток:

  • Постоянное напряжение на незаземленном конце.
  • Требуется SVL, если постоянное напряжение во время повреждения чрезмерно.
  • Требуется дополнительного заземляющего проводника для тока короткого замыкания, если обратный ток на землю нежелателен.Более сильные магнитные поля вокруг кабеля по сравнению с прочно связанной системой.
  • Постоянное напряжение на экране кабеля пропорционально длине кабеля и величине тока в жиле.
  • Обычно подходит для отрезков кабеля менее 500 м или длины одного барабана .

(B) Раздельная система с одноточечным соединением:

  • Также известна как система одинарного склеивания двойной длины .
  • Непрерывность экрана кабеля прерывается в средней точке, и необходимо установить SVL с каждой стороны изоляционного соединения.
  • Другие требования идентичны системам одноточечного соединения, таким как SVL, заземляющий проводник, перестановка заземляющего проводника.
  • Фактически две секции одноточечного склеивания.
  • Отсутствует циркулирующий ток и нулевое напряжение на заземленных концах, постоянное напряжение на соединении секционирования.

Преимущества:

  • Нет циркулирующего тока на экране.
  • Отсутствует эффект нагрева экрана кабеля.
  • Подходит для более длинного сечения кабеля по сравнению с одноточечной системой соединения и одножильной системой с прочным соединением.
  • Экономичный.

Недостатки:

  • Постоянное напряжение существует на стыке экрана и секционирующей изоляции.
  • Требуется SVL для защиты незаземленного конца.
  • Требуется отдельный провод заземления для тока нулевой последовательности.
  • Не подходит для кабелей сечением более 1000 м.
  • Подходит для кабельных секций длиной 300 ~ 1000 м, что вдвое превышает длину системы одноточечного соединения.

(2) Системы с двухсторонним сплошным соединением (одножильный кабель).

  • Самый простой и распространенный метод.
  • Экран кабеля соединен с сеткой заземления с обоих концов (через соединительную коробку).
  • Для устранения наведенных напряжений в экране кабеля необходимо заземлить оболочку на обоих концах цепи кабеля.
  • Это устраняет необходимость в параллельном проводе непрерывности, используемом в одинарных системах заземления.Это также устраняет необходимость в установке SVL, например, используемой на свободном конце кабельных цепей с одноточечным соединением
  • Значительный циркулирующий ток в экране Пропорционально току в сердечнике и длине кабеля, а также снижает его стоимость.
  • Можно проложить кабель в виде компактного трилистника, если это допустимо.
  • Подходит для трасс длиной более 500 метров .
  • Очень маленькое постоянное напряжение порядка нескольких вольт.

Преимущества:

  • Минимум необходимого материала.
  • Наиболее экономично, если отопление не является основной проблемой.
  • Обеспечивает путь для тока короткого замыкания, минимизируя ток возврата на землю и EGVR в месте назначения кабеля.
  • Не требует ограничителя напряжения экрана (SVL).
  • Меньше электромагнитного излучения.

Недостатки:

  • Обеспечивает путь для циркулирующего тока.
  • Эффект нагрева в экране кабеля, большие потери. Поэтому может потребоваться снижение номинала кабеля или кабель большего диаметра.
  • Передает напряжение между сайтами, когда на одном сайте есть EGVR.
  • Можно прокладывать кабели в форме трилистника для уменьшения потерь в экране.
  • Обычно применяется к короткому кабелю длиной в десятки метров. Циркулирующий ток пропорционален длине кабеля и величине тока нагрузки.

(3) Система поперечных кабелей.

  • Система является перекрестно связанной, если схема такова, что цепь обеспечивает электрически непрерывную оболочку, идущую от заземленной клеммы к заземленной клемме, но при этом оболочки секционированы и перекрестно соединены таким образом, чтобы уменьшить циркулирующие токи оболочки.
  • In Этот тип напряжения будет индуцироваться между экраном и землей, но значительного тока не будет.
  • Максимальное наведенное напряжение появится в соединительных коробках для перекрестного соединения. Этот метод позволяет обеспечить максимальную пропускную способность кабеля по току, как при одноточечном соединении, но при большей длине трассы, чем последний. Это требует разделения экрана и дополнительных полей ссылок.
  • Для поперечного соединения длина кабеля делится на три примерно равных участка.Каждое из трех переменных магнитных полей индуцирует напряжение с фазовым сдвигом 120 ° в экранах кабеля.
  • Поперечное соединение происходит в ящиках звеньев. В идеале векторное сложение индуцированных напряжений приводит к U (Rise) = 0. На практике длина кабеля и условия прокладки будут варьироваться, что приведет к небольшому остаточному напряжению и незначительному току. Так как ток отсутствует, потерь в экране практически нет.
  • Сумма трех напряжений равна нулю, поэтому концы трех секций могут быть заземлены.
  • Суммирование индуцированного напряжения на секционированном экране от каждой фазы, что приводит к нейтрализации наведенных напряжений в трех последовательных второстепенных секциях.
  • Обычно один барабан (около 500 м) на вспомогательную секцию.
  • Положение секционирования и положение кабельного соединения должны совпадать.
  • Прочно заземлены в местах стыков основных секций.
  • Переставьте сердечник кабеля для уравновешивания суммируемых наведенных напряжений.
  • Соединительную коробку следует использовать на каждом секционирующем соединении и сбалансировать полное сопротивление на всех фазах.
  • Профиль величины наведенного напряжения вдоль экрана основного участка кабельной системы с поперечным соединением.
  • Практически нулевой циркулирующий ток и напряжение на удаленной земле на глухозаземленных концах.
  • Для получения оптимального результата существует два «креста». Один из них - это перемещение жилы кабеля, пересекающего жилу кабеля, на каждой секции, а второй - перекрестное соединение экранов кабеля, фактически без перемещения экрана.
  • Перекрестное соединение экрана кабеля : Подавляет наведенное напряжение в экране на каждом стыке основной секции.
  • Перестановка кабелей: Обеспечивает одинаковую величину суммируемых напряжений. Большее постоянное напряжение на экране внешнего кабеля.
  • На экране присутствуют постоянные напряжения, и большинство секционных соединений кабелей и соединений должны быть установлены как система изолированного экрана.

Требование транспонирования для сердечника кабеля.

  • Если сердечник не переставлен, значит он плохо нейтрализован, что приводит к возникновению циркулирующих токов.
  • Кабель должен быть переставлен, а экран должен быть скреплен поперечным швом в каждой позиции секционирования для оптимальной нейтрализации

Преимущество:

  • Не требуется заземляющий провод.
  • Фактически нулевой циркулирующий ток на экране.
  • Постоянное напряжение на экране контролируется.
  • Технически превосходит другие методы.
  • Подходит для кабельной сети на большие расстояния.

Недостаток:

  • Технически сложно.
  • Дороже.

Сравнение методов склеивания:

Метод заземления

Постоянное напряжение на конце кабеля

Требуется ограничитель напряжения оболочки

Заявка

Одностороннее соединение

Есть

Есть

До 500 метров
Двухстороннее соединение

Короткие соединения до 1 км и подстанции, которые практически не применяются для высоковольтных кабелей, скорее для кабелей среднего и низкого напряжения
Перекрестное соединение

Только в точках перекрестного соединения

Есть

Соединения на большие расстояния, если требуются соединения

Потери в оболочке в зависимости от типа соединения:

  • Потери в оболочке зависят от тока и создаются индуцированными токами, когда ток нагрузки протекает по проводникам кабеля.
  • Токи оболочки одножильных кабелей индуцируются эффектом «трансформатора»; то есть магнитным полем переменного тока, протекающего в проводнике кабеля, которое индуцирует напряжения в оболочке кабеля или других параллельных проводниках.
  • Электродвижущие силы, индуцированные оболочкой (ЭДС), создают два типа потерь: потери на циркулирующий ток (Y 1 ) и потери на вихревые токи (Y2), поэтому общие потери в металлической оболочке кабеля составляют: Y = Y1 + Y2
  • Вихревые токи, циркулирующие в радиальном и продольном направлениях по оболочкам кабеля, генерируются по схожим принципам эффекта скин-эффекта и близости i.е. они индуцируются токами в проводниках, токами, циркулирующими в оболочке, и токами, протекающими в непосредственной близости проводников с током.
  • Они образуются в кабельной оболочке независимо от системы соединения одножильных или трехжильных кабелей.
  • Вихревые токи, как правило, имеют меньшую величину по сравнению с контурными (циркулирующими) токами сплошных кабельных оболочек, и ими можно пренебречь, за исключением больших сегментных проводников, и они рассчитываются в соответствии с формулами, приведенными в стандарте IEC60287.
  • Циркуляционные токи генерируются в оболочке кабеля, если оболочки образуют замкнутую петлю при соединении вместе на удаленных концах или промежуточных точках вдоль трассы кабеля.
  • Эти потери называются потерями на циркулирующий ток в оболочке, и они определяются величиной тока в проводнике кабеля, частотой, средним диаметром, сопротивлением оболочки кабеля и расстоянием между одножильными кабелями.

Заключение:

  • Существует много разногласий относительно того, следует ли заземлять экран кабеля с обоих концов или только с одного конца.Если заземлено только на одном конце, любой возможный ток короткого замыкания должен проходить от места замыкания до заземленного конца, вызывая сильный ток в обычно очень легком проводе экрана. Такой ток может легко повредить или разрушить экран и потребовать замены всего кабеля, а не только поврежденного участка.
  • Если оба конца заземлены, ток короткого замыкания будет делиться и течь к обоим концам, что снижает нагрузку на экран и, следовательно, снижает вероятность повреждения.
  • Многократное заземление, а не просто заземление на обоих концах, - это просто заземление экрана или оболочки кабеля во всех точках доступа, таких как люки или вытяжные коробки.Это также ограничивает возможное повреждение щита только поврежденным участком.

Каталожные номера:

  1. Mitton Consulting.
  2. EMElectricals

Нравится:

Нравится Загрузка ...

Связанные

.

Смотрите также