Ссбт электробезопасность защитное заземление зануление


ГОСТ 12.1.030-81 Система стандартов безопасности труда (ССБТ). Электробезопасность. Защитное заземление. Зануление (с Изменением N 1), ГОСТ от 15 мая 1981 года №12.1.030-81

ГОСТ 12.1.030-81

Группа Т58

Система стандартов безопасности труда

ЭЛЕКТРОБЕЗОПАСНОСТЬ. ЗАЩИТНОЕ ЗАЗЕМЛЕНИЕ. ЗАНУЛЕНИЕ

Occupational safety standards system. Electric safety.
Protective conductive earth, neutralling

Дата введения 1982-07-01


ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 15.05.81 N 2404

Ограничение срока действия снято Постановлением Госстандарта России от 22.06.92 N 564

ПЕРЕИЗДАНИЕ (июнь 2001 г.) с Изменением N 1, утвержденным в марте 1987 г. (ИУС N 7-87)


Настоящий стандарт распространяется на защитное заземление и зануление электроустановок постоянного и переменного тока частотой до 400 Гц и устанавливает требования по обеспечению электробезопасности с помощью защитного заземления, зануления.

Стандарт не распространяется на защитное заземление, зануление электроустановок, применяемых во взрывоопасных зонах, на электрифицированном транспорте, судах, в металлических резервуарах, под водой, под землей и для медицинской техники.

Термины, используемые в стандарте, и их пояснения приведены в приложении 1.

Стандарт соответствует СТ СЭВ 3230-81 в части защитного заземления.

(Измененная редакция, Изм. N 1).

1 Общие положения

1.1. Защитное заземление или зануление должно обеспечивать защиту людей от поражения электрическим током при прикосновении к металлическим нетоковедущим частям, которые могут оказаться под напряжением в результате повреждения изоляции.

1.1.1. Защитное заземление следует выполнять преднамеренным электрическим соединением металлических частей электроустановок с "землей" или ее эквивалентом.

1.1.2. Зануление следует выполнять электрическим соединением металлических частей электроустановок с заземленной точкой источника питания электроэнергией при помощи нулевого защитного проводника.

1.2. Защитному заземлению или занулению подлежат металлические части электроустановок, доступные для прикосновения человека и не имеющие других видов защиты, обеспечивающих электробезопасность.

1.3. Защитное заземление или зануление электроустановок следует выполнять:

при номинальном напряжении 380 В и выше переменного тока и 440 В и выше постоянного тока - во всех случаях;

при номинальном напряжении от 42 В до 380 В переменного тока и от 110 В до 440 В постоянного тока при работах в условиях с повышенной опасностью и особо опасных по ГОСТ 12.1.013-78.

1.4. В качестве заземляющих устройств электроустановок в первую очередь должны быть использованы естественные заземлители.

При использовании железобетонных фундаментов промышленных зданий и сооружений в качестве естественных заземлителей и обеспечении допустимых напряжений прикосновения не требуется сооружение искусственных заземлителей, прокладка выравнивающих полос снаружи зданий и выполнение магистральных проводников заземления внутри здания. Металлические и железобетонные конструкции при использовании их в качестве заземляющих устройств должны образовывать непрерывную электрическую цепь по металлу, а в железобетонных конструкциях должны предусматриваться закладные детали для присоединения электрического и технологического оборудования (см.приложения 2, 3 и 4).

1.5. Допустимые напряжения прикосновения и сопротивления заземляющих устройств должны быть обеспечены в любое время года.

1.6. Заземляющее устройство, используемое для заземления электроустановок одного или различных назначений и напряжений, должно удовлетворять всем требованиям, предъявляемым к заземлению этих электроустановок.

1.7. В качестве заземляющих и нулевых защитных проводников следует использовать специально предназначенные для этой цели проводники, а также металлические строительные, производственные и электромонтажные конструкции. В качестве нулевых защитных проводников в первую очередь должны использоваться нулевые рабочие проводники. Для переносных однофазных приемников электрической энергии, светильников при вводе в них открытых незащищенных проводов, приемников электрической энергии постоянного тока указанной нормы в качестве заземляющих и нулевых защитных проводников следует использовать только предназначенные для этой цели проводники.

1.8. Материал, конструкция и размеры заземлителей, заземляющих и нулевых защитных проводников должны обеспечивать устойчивость к механическим, химическим и термическим воздействиям на весь период эксплуатации.

1.9. Для выравнивания потенциалов металлические строительные и производственные конструкции должны быть присоединены к сети заземления или зануления. При этом естественные контакты в сочленениях являются достаточными.

2. Электроустановки напряжением от 110 до 750 кВ

2.1. В электроустановках напряжением от 110 до 750 кВ должно быть выполнено защитное заземление.

2.2. Заземляющие устройства следует выполнять по нормам на напряжение прикосновения или по нормам на их сопротивление.

Заземляющее устройство, которое выполняют по нормам на сопротивление, должно иметь в любое время года сопротивление не более 0,5 Ом. При удельном сопротивлении "земли" , большем 500 Ом·м, допускается повышать сопротивление заземляющего устройства в зависимости от

.

2.3. Напряжение на заземляющем устройстве при стекании с него тока замыкания на "землю" не должно превышать 10 кВ.

Напряжение выше 10 кВ допускается на заземляющих устройствах, с которых исключен вынос потенциалов за пределы зданий и внешних ограждений электроустановки.

При напряжениях на заземляющем устройстве выше 5 кВ должны предусматриваться меры по защите изоляции отходящих кабелей связи и телемеханики.

2.4. В целях выравнивания потенциала на территории, занятой электрооборудованием, должны быть проложены продольные и поперечные горизонтальные элементы заземлителя и соединены сваркой между собой, а также с вертикальными элементами заземлителя.

3. Электроустановки напряжением выше 1000 в в сети с изолированной нейтралью

3.1. В электроустановках напряжением выше 1000 В в сети с изолированной нейтралью должно быть выполнено защитное заземление, при этом рекомендуется предусматривать устройства автоматического отыскания замыкания на "землю". Защиту от замыканий на "землю" рекомендуется устанавливать с действием на отключение (по всей электрически связанной сети), если это необходимо по условиям безопасности.

3.2. Наибольшее сопротивление заземляющего устройства в Ом не должно быть более

                          

,

где - расчетная сила тока заземления на землю, А.

При использовании заземляющего устройства одновременно для электроустановок напряжением до 1000 В

                           

.


Расчетная сила тока замыкания на землю должна быть определена для той из возможных в эксплуатации схемы сети, при которой сила токов замыкания на землю имеет наибольшее значение.

3.3. При удельном сопротивлении земли , большем 500 Ом·м, допускается вводить на указанные значения сопротивлений заземляющего устройства повышающие коэффициенты, зависящие от .

     

4. Электроустановки напряжением до 1000 В в сети с заземленной нейтралью

4.1. В стационарных электроустановках трехфазного тока в сети с заземленной нейтралью или заземленным выводом однофазного источника питания электроэнергией, а также с заземленной средней точкой в трехпроводных сетях постоянного тока должно быть выполнено зануление.

4.2. При занулении фазные и нулевые защитные проводники должны быть выбраны таким образом, чтобы при замыкании на корпус или на нулевой проводник возникал ток короткого замыкания, обеспечивающий отключение автомата или плавление плавкой вставки ближайшего предохранителя.

4.3. В цепи нулевых защитных проводников не должно быть разъединяющих приспособлений и предохранителей.

В цепи нулевых рабочих проводников, если они одновременно служат для целей зануления, допускается применение разъединительных приспособлений, которые одновременно с отключением нулевых рабочих проводников отключают также все проводники, находящиеся под напряжением.

4.4. Сопротивление заземляющего устройства, к которому присоединены нейтрали генераторов (трансформаторов) или выводы однофазного источника питания электроэнергией, с учетом естественных заземлителей и повторных заземлителей нулевого провода должно быть не более 2,4 и 8 Ом соответственно, при междуфазных напряжениях 660, 380 и 220 В трехфазного источника питания или 380, 220 и 127 В однофазного источника питания.

При удельном электрическом сопротивлении "земли" выше 100 Ом·м допускается увеличение указанной нормы в /100 раз

.

4.5. На воздушных линиях электропередачи зануление следует осуществлять нулевым рабочим проводом, проложенным на тех же опорах, что и фазные провода.

5. Электроустановки напряжением до 1000 в в сети с изолированной нейтралью

5.1. В электроустановках переменного тока в сетях с изолированной нейтралью или изолированными выводами однофазного источника питания электроэнергией защитное заземление должно быть выполнено в сочетании с контролем сопротивления изоляции.

5.2. Сопротивление заземляющего устройства в стационарных сетях должно быть не более 10 Ом. При удельном сопротивлении земли, большем 500 Ом·м, допускается вводить повышающие коэффициенты, зависящие от .

 

6. Передвижные электроустановки и ручные электрические машины класса I в сетях напряжением до 1000 В

6.1. Режим нейтрали и защитные меры передвижных источников питания электроэнергией, используемых для питания стационарных приемников электрической энергии, должны соответствовать режиму нейтрали и защитным мерам, принятым в сетях стационарных приемников электрической энергии.

6.2. При питании передвижных приемников электрической энергии и ручных электрических машин класса I от стационарных сетей с заземленной нейтралью или от передвижных электроустановок с заземленной нейтралью зануление следует выполнять в сочетании с защитным отключением.


Допускается выполнять зануление - для ручных электрических машин класса I; зануление или зануление в сочетании с повторным заземлением - для передвижных приемников электрической энергии.

6.3. При питании передвижных приемников электрической энергии и ручных электрических машин класса I от стационарной сети или передвижного источника питания электроэнергией, имеющих изолированную нейтраль и контроль сопротивления изоляции, защитное заземление должно применяться в сочетании с металлической связью корпусов электрооборудования или защитным отключением.

6.4. Сопротивление заземляющего устройства в передвижных электроустановках с изолированной нейтралью при питании от передвижных источников электроэнергии определяется по значениям допустимых напряжений прикосновения при однополюсном замыкании на корпус либо устанавливается в соответствии с требованиями нормативно-технической документации.

6.5. Защитное заземление передвижного источника питания электроэнергией с изолированной нейтралью и постоянным контролем сопротивления изоляции допускается не выполнять:

если расчетное сопротивление заземляющего устройства больше сопротивления заземляющего устройства рабочего заземления прибора постоянного контроля сопротивления изоляции;

если передвижной источник питания электроэнергией и приемники электрической энергии расположены непосредственно на передвижном механизме, их корпуса соединены металлической связью и источник не питает другие приемники электрической энергии вне этого механизма;

если передвижной источник питания электроэнергией предназначен для питания конкретных приемников электрической энергии, их корпуса соединены металлической связью, а их число и длина кабельной сети определяется либо величиной допустимого напряжения прикосновения при однополюсном замыкании на корпус, либо установлены нормативно-технической документацией.

6.6. В передвижных электроустановках с источником питания электроэнергией и приемниками электрической энергии, расположенными на общей металлической раме передвижного механизма и не имеющих приемников электрической энергии вне этого механизма, допускается применять в качестве единственной защитной меры металлическую связь корпусов оборудования и нейтрали источника питания электроэнергией с металлической рамой передвижного механизма.

7. Контроль устройств защитного заземления, зануления

7.1. Соответствие устройств защитного заземления или зануления требованиям настоящего стандарта должно устанавливаться при приемо-сдаточных испытаниях электроустановок после их монтажа на месте эксплуатации по "Правилам устройства электроустановок", утвержденным Госэнергонадзором СССР, а также периодически в процессе эксплуатации указанных устройств по "Правилам технической эксплуатации электроустановок потребителей" и "Правилам техники безопасности при эксплуатации электроустановок потребителей", утвержденным Госэнергонадзором СССР.

ПРИЛОЖЕНИЕ 1 (справочное). ТЕРМИНЫ И ПОЯСНЕНИЯ, ПРИМЕНЯЕМЫЕ В СТАНДАРТЕ

ПРИЛОЖЕНИЕ 1
Справочное

Термин

Пояснение

1. Заземлитель

Проводник или совокупность металлически соединенных проводников, находящихся в соприкосновении с землей или ее эквивалентом

2. Естественный заземлитель

Заземлитель, в качестве которого используют электропроводящие части строительных и производственных конструкций и коммуникаций

3. Заземляющий проводник

Проводник, соединяющий заземляемые части с заземлителем

4. Заземляющее устройство

Совокупность конструктивно объединенных заземляющих проводников и заземлителя

5. Магистраль заземления (зануления)

Заземляющий (нулевой защитный) проводник с двумя или более ответвлениями

6. Заземленная нейтраль

Нейтраль генератора (трансформатора), присоединенная к заземляющему устройству непосредственно или через малое сопротивление

7. Изолированная нейтраль

Нейтраль генератора (трансформатора), не присоединенная к заземляющему устройству или присоединенная к нему через большое сопротивление

ПРИЛОЖЕНИЕ 2 (справочное). ОЦЕНКА ВОЗМОЖНОСТИ ИСПОЛЬЗОВАНИЯ ЖЕЛЕЗОБЕТОННЫХ ФУНДАМЕНТОВ ПРОМЫШЛЕННЫХ ЗДАНИЙ В КАЧЕСТВЕ ЗАЗЕМЛИТЕЛЕЙ


ПРИЛОЖЕНИЕ 2
Справочное


При использовании железобетонных фундаментов промышленных зданий в качестве заземлителей сопротивление растеканию заземляющего устройства в Ом должно оцениваться по формуле

, (1)


где - площадь, ограниченная периметром здания, м;

- удельное эквивалентное электрическое сопротивление земли, Ом·м.

Для расчета в Ом·м следует использовать формулу

, (2)


где - удельное электрическое сопротивление верхнего слоя земли, Ом·м;

- удельное электрическое сопротивление нижнего слоя, Ом·м;

- мощность (толщина) верхнего слоя земли, м;

, - безразмерные коэффициенты, зависящие от соотношения удельных электрических сопротивлений слоев земли.

Если , = 3,6, = 0,1;

если , =1,1х10, = 0,3х10.


Пример расчета:

Пусть =500 Ом · м; =130 Ом · м; = 3,7 м; = 55 мм.

Тогда в соответствии с формулой (2) получим

Ом·м.


Под верхним слоем следует понимать слой земли, удельное сопротивление которого более чем в 2 раза отличается от удельного электрического сопротивления нижнего слоя .

В электроустановках напряжением от 110 до 750 кВ не требуется прокладка выравнивающих проводников, в том числе у входов и въездов, кроме мест расположения заземления нейтралей силовых трансформаторов, короткозамыкателей, вентильных разрядников и молниеотводов, если выполняется условие

,


где - расчетная сила тока однофазного замыкания, стекающего в "землю" с фундаментов здания, кА.

(Измененная редакция, Изм. N 1).

ПРИЛОЖЕНИЕ 3 (справочное)

ПРИЛОЖЕНИЕ 3
Справочное

СОЕДИНЕНИЕ АРМАТУРЫ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ

1 - молниеприемная сетка; 2 - токоотвод; 3 - арматура колонны;
4 - заземляющая перемычка; 5 - арматура фундамента

ПРИЛОЖЕНИЕ 4 (справочное)

ПРИЛОЖЕНИЕ 4
Справочное

СОЕДИНЕНИЕ МЕТАЛЛИЧЕСКОЙ КОЛОННЫ С АРМАТУРОЙ ЖЕЛЕЗОБЕТОННОГО ФУНДАМЕНТА


1 - арматура подошвы; 2 - арматура фундамента; 3 - фундамент;
4 - фундаментные болты (не менее двух), соединенные с арматурой фундамента;
5 - стальная колонна; 6 - пластины для приварки проводников заземления

Текст документа сверен по:
официальное издание
Система стандартов безопасности труда: Сб. ГОСТов. -
М.: ИПК Издательство стандартов, 2001

путь ударного тока | Электробезопасность

  • Сетевые сайты:
    • Последний
    • Новости
    • Технические статьи
    • Последний
    • Проектов
    • Образование
    • Последний
    • Новости
    • Технические статьи
    • Обзор рынка
    • Образование
    • Последний
    • Новости
    • Мнение
    • Интервью
    • Особенности продукта
    • Исследования
    • Форумы
  • Авторизоваться
  • Присоединиться
    • Авторизоваться
    • Присоединиться к AAC
    • Или войдите с помощью

      • Facebook
      • Google

0:00 / 0:00

  • Подкаст
  • Последний
  • Подписывайся
    • Google
    • Spotify
.

Испытаний на электробезопасность

Следующие параграфы и схемы описывают тесты на электрическую безопасность, обычно доступные для тестеров безопасности медицинского оборудования. Обратите внимание, что, хотя HEI 95 и DB9801 больше не актуальны, они упоминаются в тексте, поскольку многие отделы медицинской электроники использовали их в качестве основы для местных приемочных испытаний и даже протоколов стандартных испытаний. Протоколы, основанные на обоих наборах руководств, также доступны для многих тестеров безопасности медицинского оборудования.

6.1 Нормальные условия и условия единичной неисправности

Основной принцип, лежащий в основе философии электробезопасности, заключается в том, что в случае возникновения единичного ненормального внешнего состояния или отказа одного средства защиты от опасности не должно возникать угрозы безопасности. Такие условия называются «состояниями единичного повреждения» (SFC) и включают такие ситуации, как обрыв защитного заземляющего проводника или одного питающего проводника, появление внешнего напряжения на приложенной части, отказ основной изоляции или ограничение температуры. устройств.

Если условие единичной неисправности не применяется, оборудование считается находящимся в «нормальном состоянии» (NC). Однако важно понимать, что даже в этом состоянии выполнение определенных тестов может поставить под угрозу средства защиты от поражения электрическим током. Например, если ток утечки на землю измеряется в нормальных условиях, полное сопротивление измерительного устройства, включенного последовательно с проводом защитного заземления, означает отсутствие эффективной дополнительной защиты от поражения электрическим током.

Многие испытания на электробезопасность проводятся при различных условиях единичного отказа, чтобы убедиться в отсутствии опасности, даже если эти условия возникают на практике. Часто случается, что условия единичного отказа представляют наихудший случай и дают самые неблагоприятные результаты. Очевидно, что при проведении таких испытаний безопасность тестируемого оборудования может быть поставлена ​​под угрозу. Персонал, проводящий испытания на электробезопасность, должен знать, что обычные средства защиты от поражения электрическим током не обязательно работают во время испытаний, и поэтому им следует принимать необходимые меры предосторожности для собственной безопасности и безопасности других лиц.В частности, во время процедуры проверки безопасности нельзя прикасаться к испытуемому оборудованию.

6.2 Защитное заземление

Сопротивление защитного заземляющего провода измеряется между контактом заземления сетевой вилки и точкой защитного заземления на корпусе оборудования (см. Рисунок 6). Показание обычно не должно превышать 0,2 Ом в любой такой точке. Очевидно, что испытание применимо только к оборудованию класса I.

В стандарте IEC60601 испытание проводится с использованием тока 50 Гц от 10 до 25 А в течение не менее 5 секунд.Хотя это типовой тест, некоторые тестеры безопасности медицинского оборудования имитируют этот метод. Повреждение оборудования может произойти, если высокие токи передаются в точки, не имеющие защитного заземления, например, функциональные заземления. При использовании сильноточных тестеров следует проявлять особую осторожность, чтобы обеспечить подключение пробника к точке, предназначенной для защитного заземления.

HEI 95 и DB9801 Дополнение 1 рекомендовали, чтобы испытание проводилось при токе 1 А или меньше по причине, описанной выше.

Если используемый прибор не делает это автоматически, сопротивление используемых измерительных проводов следует вычесть из показаний.

Если целостность защитного заземления удовлетворительна, можно провести испытания изоляции.

Применимо к Класс I, все типы
Лимит: 0,2 Ом
DB9801 рекомендуется ?: Да, при 1А или меньше.
ВУЗ 95 рекомендуется ?: Да, при 1А или меньше.
Примечания: Убедитесь, что зонд находится в точке защитного заземления

Рисунок 8. Измерение целостности защитного заземления.

6.3 Испытания изоляции

IEC 60601-1 (второе издание), раздел 17, устанавливает спецификации для электрического разделения частей медицинского электрооборудования, соответствие которым по существу подтверждается осмотром и измерением токов утечки.Дальнейшие испытания изоляции подробно описаны в разделе 20 «Электрическая прочность». В этих тестах используются источники переменного тока для тестирования оборудования, которое было предварительно подготовлено к определенным уровням влажности. Тесты, описанные в стандарте, являются типовыми и не подходят для использования в качестве стандартных.

HEI 95 и DB9801 рекомендуют для оборудования класса I измерять сопротивление изоляции в сетевой вилке между соединенными вместе контактами под напряжением и нейтралью и контактом заземления. В то время как HEI 95 рекомендовал использовать тестер изоляции 500 В постоянного тока, DB 9801 рекомендовал использовать 350 В постоянного тока в качестве испытательного напряжения.На практике последнее требование может оказаться трудным, и в примечании признается, что испытательное напряжение 500 В постоянного тока вряд ли причинит какой-либо вред. Полученное значение обычно должно превышать 50 МОм, но в исключительных случаях может быть меньше. Например, оборудование, содержащее нагреватели с минеральной изоляцией, может иметь сопротивление изоляции всего 1 МОм при отсутствии повреждений. Испытание следует проводить с исправными предохранителями и включенным оборудованием, если имеются механические переключатели включения / выключения (см. Рисунок 9).

Применимо к Класс I, все типы
Пределы: Не менее 50 МОм
DB9801 рекомендуется ?: Есть
ВУЗ 95 рекомендуется ?: Есть
Примечания: Оборудование, содержащее обогреватели с минеральной изоляцией, может давать значения до 1 МОм. Проверьте, что оборудование включено.

Рисунок 9. Измерение сопротивления изоляции для оборудования класса I

HEI 95 далее рекомендует для оборудования класса II измерять сопротивление изоляции между всеми соединенными вместе приложенными частями и любыми доступными токопроводящими частями оборудования. Значение обычно не должно быть меньше 50 МОм (см. Рисунок 10). DB9801 Дополнение 1 не рекомендует проводить какие-либо испытания изоляции для оборудования класса II.

Применимо к Класс II, все типы с рабочими частями
Пределы: не менее 50 МОм.
DB9801 рекомендуется ?: Нет
ВУЗ 95 рекомендуется ?: Есть
Примечания: Переместите зонд, чтобы найти худший вариант.

Рисунок 10. Измерение сопротивления изоляции оборудования класса II.

Удовлетворительные результаты проверки целостности заземления и изоляции указывают на то, что можно безопасно приступить к проверке тока утечки.

6.4 Устройство для измерения тока утечки

Устройство измерения тока утечки, рекомендованное МЭК 60601-1, нагружает источник тока утечки с резистивным сопротивлением около 1 кОм и имеет точку половинной мощности на частоте около 1 кГц. Рекомендуемое измерительное устройство было немного изменено между выпусками стандарта 1979 и 1989 годов, но оставалось функционально очень похожими. На рисунке 11 показано расположение измерительного устройства. Используемый милливольтметр должен показывать истинное среднеквадратичное значение и иметь входное сопротивление более 1 МОм.На практике это легко достижимо с помощью большинства современных мультиметров хорошего качества. Измеритель на показанных схемах измеряет 1 мВ на каждый мкА тока утечки.

Рис. 11. Устройства для измерения токов утечки.

6.5 Ток утечки на землю

Для оборудования класса I ток утечки на землю измеряется, как показано на рисунке 12. Ток следует измерять при нормальной и обратной полярности сети. HEI 95 и DB9801 Приложение 1 рекомендуют измерять ток утечки на землю только в нормальных условиях (NC).Многие тестеры безопасности предлагают возможность выполнить тест в условиях единичного повреждения, обрыва нейтрального проводника. Такое расположение обычно дает более высокое значение тока утечки.

Одним из наиболее значительных изменений в отношении электробезопасности в стандарте IEC 60601-1 издания 2005 г. является увеличение в 10 раз допустимого тока утечки на землю до 5 мА в нормальных условиях и 10 мА в условиях единичного повреждения. Это объясняется тем, что ток утечки на землю сам по себе не опасен.

Более высокие значения токов утечки на землю в соответствии с местными нормативами и IEC 60364-7-710 (электроснабжение для медицинских учреждений) допускаются для стационарного оборудования, подключенного к выделенной цепи питания.

Применимо к Оборудование класса I, все типы
Пределы: 0,5 мА в NC, 1 мА в SFC или 5 мА и 10 мА соответственно для оборудования, разработанного в соответствии с IEC60601-1: 2005.
DB9801 рекомендуется ?: Да, только в нормальном состоянии.
ВУЗ 95 рекомендуется ?: Да, только в нормальном состоянии.
Примечания: Измерение при нормальной и обратной стороне сети. Убедитесь, что оборудование включено.

Рисунок 12. Измерение тока утечки на землю.

6.6 Ток утечки корпуса или ток прикосновения

Ток утечки корпуса измеряется между открытой частью оборудования, которая не предназначена для защитного заземления, и истинным заземлением, как показано на рисунке 13.Испытание применимо к оборудованию как класса I, так и класса II, и его следует проводить при нормальной и обратной полярности сети. HEI 95 рекомендовал проводить испытание при разомкнутой цепи защитного заземления SFC для оборудования класса I и в нормальных условиях для оборудования класса II. В Приложении 1 к DB9801 рекомендуется, чтобы испытание проводилось в нормальных условиях только для оборудования класса I и класса II. Многие тестеры безопасности также позволяют выбирать SFC прерывания токоведущих или нейтральных проводников.Точки на оборудовании класса I, которые, вероятно, не будут иметь защитного заземления, могут включать облицовку передней панели, узлы ручки и т. Д.

Термин «ток утечки корпуса» был заменен в новой редакции стандарта IEC 60601-1 термином «ток прикосновения», что привело его в соответствие с IEC 60950-1 для оборудования информационных технологий. Однако пределы для тока прикосновения такие же, как пределы для тока утечки корпуса согласно второму изданию стандарта: 0,1 мА в нормальных условиях и 0.5 мА при единичном отказе.

На практике, если часть оборудования имеет доступные проводящие части, которые имеют защитное заземление, то для удовлетворения новых требований к току прикосновения ток утечки на землю должен соответствовать старым ограничениям. Это связано с тем, что при испытании тока прикосновения от точки защитного заземления с отключенным проводом защитного заземления оборудования значение будет таким же, как и для тока утечки на землю при нормальных условиях.

Следовательно, там, где регистрируются более высокие токи утечки на землю для оборудования, разработанного в соответствии с новым стандартом, важно проверять ток прикосновения в условиях единичного повреждения, разомкнутой цепи заземления, со всех доступных проводящих частей.

Применимо к Оборудование класса I и класса II, всех типов.
Пределы: 0,1 мА в NC, 0,5 мА в SFC
DB9801 рекомендуется ?: Да, только NC
ВУЗ 95 рекомендуется ?: Да, разомкнутая цепь SFC класса I, класс II NC.
Примечания: Убедитесь, что оборудование включено. Нормальная и обратная сеть. Переместите зонд, чтобы найти худший вариант.

Рисунок 13. Измерение тока утечки корпуса

6.7 Ток утечки на пациента

Согласно IEC 60601-1, для оборудования класса I и класса II типа B и BF, ток утечки пациента измеряется от всех частей, имеющих одинаковую функцию, соединенных вместе и заземленных (рисунок 14).Для оборудования типа CF ток измеряется от каждой подключенной части по очереди, и утечка тока утечки не должна превышаться на какой-либо одной подключенной части (рисунок 15).

HEI 95 придерживался того же метода, однако в Приложении 1 к DB9801 рекомендовалось измерять ток утечки пациента от каждой применяемой части по очереди для всех типов оборудования, хотя рекомендуемые пределы тока утечки не были пересмотрены с учетом измененного метода испытаний. для оборудования B и BF.

При измерении тока утечки пациента необходимо проявлять особую осторожность, чтобы выходы оборудования были неактивными.В частности, выходы оборудования для диатермии и стимуляторов могут быть фатальными и могут повредить испытательное оборудование.

Применимо к Оборудование всех классов, типа B и BF, имеющее рабочие детали.
Пределы: 0,1 мА в NC, 0,5 мА в SFC.
DB9801 рекомендуется ?: Нет
ВУЗ 95 рекомендуется ?: Да, обрыв цепи заземления SFC класса I, нормальное состояние класса II.
Примечания: Оборудование включено, но выходы неактивны. Нормальная и обратная сеть.

Рисунок 14. Измерение тока утечки пациента при соединенных вместе рабочих частях

Оборудование
Применимо к Оборудование класса I и класса II, типа CF (B & BF только для DB9801) с рабочими частями.
Пределы: 0,01 мА в NC, 0.05 мА в SFC.
DB9801 рекомендуется ?: Да, все типы, только в нормальном состоянии.
ВУЗ 95 рекомендуется ?: Да, только тип CF, разомкнутая цепь заземления SFC класса I, нормальное состояние класса II.
Примечания: включено, но выходы неактивны. Нормальная и обратная сеть. Пределы указаны на электрод.

Рисунок 15. Измерение тока утечки пациента для каждой рабочей детали по очереди

6.8 Вспомогательный ток пациента

Вспомогательный ток пациента измеряется между любым отдельным подключением пациента и всеми другими подключениями пациента того же модуля или функции, соединенными вместе. Когда все возможные комбинации тестируются вместе со всеми возможными состояниями единичного отказа, это дает чрезвычайно большой объем данных сомнительной ценности.

Применимо к Все классы и типы оборудования, имеющего рабочие детали.
Пределы: Тип B и BF - 0,1 мА в NC, 0,5 мА в SFC. Тип CF - 0,01 мА в NC, 0,05 мА в SFC.
DB9801 рекомендуется ?:
ВУЗ 95 рекомендуется ?:
Примечания: Убедитесь, что выходы неактивны. Нормальная и обратная сеть.

Рисунок 16. Измерение вспомогательного тока пациента.

6.9 Сеть на рабочих частях (утечка через пациента)

Подавая сетевое напряжение на детали, можно измерить ток утечки, который будет течь от внешнего источника в цепи пациента. Схема измерения показана на рисунке 18.

Хотя тестер безопасности обычно подключает токоограничивающий резистор последовательно с измерительным устройством для проведения этого теста, опасность поражения электрическим током все же существует. Поэтому при проведении испытания следует проявлять особую осторожность, чтобы избежать опасности, связанной с приложением сетевого напряжения к приложенным частям.

Следует внимательно рассмотреть необходимость или полезность выполнения этого испытания на регулярной основе при сопоставлении со связанной опасностью и возможностью возникновения проблем с оборудованием. Цель испытания в соответствии с IEC 60601-1 - убедиться, что нет опасности поражения электрическим током для пациента, у которого по какой-то неустановленной причине потенциал повышен до уровня выше земли из-за соединения частей испытываемого оборудования. Стандарт требует, чтобы указанные пределы тока утечки не превышались.Нет никакой гарантии, что результаты теста не повлияют на производительность оборудования. В частности, следует проявлять осторожность в случае чувствительного физиологического измерительного оборудования. Короче говоря, тест - это «типовой тест».

Большинство тестеров безопасности медицинского оборудования называют это испытание «сетью на рабочих частях», хотя это не универсально. Один производитель называет этот тест просто «Утечка через пациента - F-тип». Во всех случаях в месте выбора теста должен быть виден признак опасности.

Применимо к Класс I и класс II, типы BF и CF с рабочими частями.
Лимит: Тип BF - 5 мА; тип CF - 0,05 мА на электрод.
DB9801 рекомендуется ?:
ВУЗ 95 рекомендуется ?: Нет
Примечания: Убедитесь, что выходы неактивны. Нормальная и обратная сеть.Требуется осторожность, особенно при использовании физиологического измерительного оборудования.

Рисунок 17. Схема измерения сети на рабочих частях

6.10 Сводка по току утечки

В следующей таблице приведены пределы тока утечки (в мА), установленные IEC60601-1 (второе издание) для наиболее часто выполняемых тестов. Большая часть оборудования, используемого в настоящее время в больницах, вероятно, было разработано в соответствии с этим стандартом, но обратите внимание, что допустимые значения тока утечки на землю были увеличены в третьем издании стандарта, как обсуждалось выше.

Значения указаны для постоянного тока. или переменного тока (среднеквадратичное значение), хотя более поздние поправки к стандарту включали отдельные пределы для постоянного тока. элемент утечки на пациента и вспомогательные токи пациента на уровне одной десятой значений, перечисленных ниже. Они не были включены в таблицу, поскольку на практике редко возникает проблема только с постоянным током. утечка, если это не подтверждается проблемой с комбинированными переменным и постоянным током. утечка.

Ток утечки
Земля
Земля для стационарного оборудования
Корпус
Пациент
Сеть на прикладной части
Вспомогательный аппарат для пациента

* Для оборудования CF типа II HEI95 рекомендует предел тока утечки корпуса равный 0.01 мА в соответствии с BS 5724 издания 1979 г.

Таблица 2. Сводка пределов тока утечки.

6.11 Сравнение рекомендаций ВУЗ 95 и БД 9801 Приложение 1

Тест ВУЗ 95 DB9801 Дополнение 1
Непрерывность заземления Используйте испытательный ток не более 1 А. Предел 0,2 Ом Используйте испытательный ток не более 1 А. Ограничение 0.2 Ом
Изоляция для оборудования класса 1 Измерьте между L и N, соединенными вместе, и E, используя тестер на 500 В постоянного тока. Предел> 50 МОм. Изучите более низкие значения Измерьте между L и N, соединенными вместе, и E, используя тестер 350 В постоянного тока. Предел> 20 МОм. Изучите более низкие значения
Изоляция для оборудования класса II Измерьте расстояние между рабочими частями и доступными токопроводящими частями оборудования. Предел> 50 МОм.Изучите более низкие значения Нет рекомендаций.
Ток утечки на землю Измерение в нормальном состоянии Предел <0,5 мА Измерение в нормальном состоянии Предел <0,5 мА
Ток утечки в корпусе Измерение в SFC, разомкнутая цепь заземления для класса 1, NC для класса II Предельное значение <0,5 мА для класса 1 <0,1 мА для класса II Измерение только в NC Предел <0,1 мА
Ток утечки на пациента Измерьте от всех частей, соединенных вместе, для оборудования B & BF и от каждой рабочей части по очереди для типа CF.Измерьте под SFC, разомкнутая цепь заземления для класса 1, NC для класса II. Пределы:
  • Класс I, B и BF <0,5 мА
  • Класс II, B и BF <0,1 мА
  • Класс I, CF <0,05 мА на электрод
  • Класс II, CF <0,01 мА на электрод
Измерение по очереди от каждой рабочей детали для всех типов оборудования Измерение только в рамках NC Пределы
  • Тип B и BF <0,1 мА на электрод
  • Тип CF <0.01 на электрод

.

Проектирование системы заземления в сети подстанции

Проектирование системы заземления в сети подстанции

Введение в сеть заземления подстанции

In высокого и среднего напряжения [1] Подстанции с воздушной изоляцией ( AIS ) электромагнитное поле , , которое вызывает статические заряды оголенных кабелей и проводов, а также атмосферные условия ( скачков ), индуцируют напряжения на обесточенных частях установки, которые создают разности потенциалов между металлическими частями и землей, а также между разными точками земли .

Подобные ситуации могут возникать при коротких замыканиях между токоведущими частями установки и токоведущими частями , например, в коротком замыкании фазы на землю .

Эти разности потенциалов дают начало ступенчатому потенциалу и потенциал касания или комбинации обоих , которые могут привести к циркуляции электрического тока через тело человека , что может причиняют вред людям .

Напряжение прикосновения ( E t ) можно определить как максимальную разность потенциалов, которая существует между заземленной металлической конструкцией, к которой можно прикоснуться рукой, и любой точкой земли при протекании тока повреждения.

Обычно считается, что расстояние между металлической конструкцией и точкой на земле составляет 1 м.

Шаговое напряжение ( E s ) определяется как максимальная разность потенциалов, которая существует между ножками при протекании тока повреждения.

Обычно считается, что расстояние между ножками составляет 1 м.

Частным случаем ступенчатого напряжения является передаваемое напряжение ( E trrd ) : когда напряжение передается на подстанцию ​​или с подстанции от или к удаленной точке, внешней по отношению к месту подстанции.

Другие концепции: :

  • Повышение потенциала земли ( GPR ): Максимальный электрический потенциал, который может получить сеть заземления подстанции относительно удаленной точки заземления, предположительно находящейся под потенциалом удаленной земли.Это напряжение, GPR, равно максимальному току сети, умноженному на сопротивление сети.
  • Напряжение сети ( E м ): Максимальное напряжение прикосновения в пределах ячейки сети заземления.
  • Напряжение прикосновения металл к металлу ( E мм ): Разница потенциалов между металлическими объектами или конструкциями в пределах подстанции, которые могут быть перекрыты прямым путем из рук в руки или из рук в руки контакт.

На схеме на Рисунке 1 показаны явления, упомянутые выше .

Рисунок 1 - Напряжение прикосновения, шага и передаваемое напряжение

Для минимизации допустимых значений от до из токов, проходящих через тело человека , до обеспечения электробезопасности для человек, работающих в пределах или рядом с установка , а также до ограничить любые возможные электрические помехи стороннему оборудованию , AIS должен быть снабжен заземлением (или заземлением ) системой , к которой все металлические не находящиеся под напряжением части к установке должны быть подключены , такие как металлические конструкции , заземлители, разрядники для защиты от перенапряжений, корпуса распределительных щитов и двигателей, рельсы трансформаторов и металлические ограждения .

Поскольку заземление влияет на уровни перенапряжения энергосистемы и ток короткого замыкания , а также на определение систем защиты, система заземления должна быть спроектирована таким образом, чтобы гарантировать надлежащую работу защитных устройств, таких как защитное реле и перенапряжения. разрядники .

Проектирование и конструкция системы заземления должны гарантировать, что система будет работать в течение ожидаемого срока службы установки, и поэтому должны учитывать будущие дополнения и максимальный ток короткого замыкания для окончательной конфигурации.

Система заземления состоит из ячеек скрытого в земле медного кабеля , с дополнительных заземляющих стержней , и должна быть рассчитана, рекомендуется использовать IEEE Std. 80-2000 .

Важные формулы для проектирования системы заземления сети подстанции

Поперечное сечение подземного кабеля следует рассчитывать в соответствии со значением тока короткого замыкания фазы на землю , но это обычное явление использовать для этой цели трехфазный ток короткого замыкания .

Для этого расчета необходимо использовать следующую формулу : Где:

  • I ” K1 - ток короткого замыкания между фазой и землей [ A ]
  • t с - продолжительность неисправности [ с ]
  • Δθ - максимально допустимое повышение температуры [ ° C ] - для неизолированной меди Δθ = 150 ° C

В соответствии со стандартом IEEE максимально допустимого шага и потенциала прикосновения и максимально допустимого тока через тело человека ( I hb ) и сопротивления сети заземления ( R g ) рассчитываются по формулам:

Максимально допустимый потенциал шага

Максимально допустимый потенциал прикосновения

Максимально допустимый ток через человека body

Сопротивление земной сети

Где:

  • C s - коэффициент снижения характеристик поверхностного слоя и рассчитывается по формуле:
  • t s - продолжительность разлом [ с ]
  • ρ с - удельное сопротивление материала поверхности [ Ом. м ] типичное значение для мокрого щебня / гравия: 2,500 Ом м
  • ρ - удельное сопротивление земли под материалом поверхности [ Ом . м ]
  • h с - толщина материала поверхности [ м ]
  • A - площадь, занимаемая наземной сеткой [ м 2 ]
  • l T - общая скрытая длина проводника, включая заземляющие стержни [ м ]

Если не используется защитный поверхностный слой, то C s = 1 и ρ s = ρ

Эти расчеты обычно выполняются с использованием специального программного обеспечения .

Сеть заземления подстанции

На Рисунке 2 показан пример сети заземления.

Рисунок 2 - Сеть заземления

Наиболее подходящие методы для соединения соединений сети заземления: :

a.) Экзотермическая сварка

Рисунок 3 - Экзотермическая сварка

Экзотермическая сварка - это процесс постоянного соединения проводников , в котором используется расплавленного металла и формы , который основан на химической реакции между оксидами металла ( проводник ) и воспламеняющимся алюминиевым порошком , что выступает в роли топлива , с выделением тепловой энергии .Эта химическая реакция представляет собой пиротехнический состав , известный как термит .

Необходимо гарантировать, что количество экзотермических сварок, выполненных с каждой формой, не будет превышать указаний производителя.

b .) Разъем C :

с использованием гидравлического обжимного инструмента и матриц с размером , подходящим для размера разъемов .

Рисунок 4 - Соединитель C и обжимной инструмент

Рядом с блоками управления автоматических выключателей, переключателей и разъединителей необходимо установить металлический эквипотенциальный мат , подключенный к системе заземления , аналогично показанный на рисунке 5.

Рисунок 5 - Металлический эквипотенциальный мат

Полезно знать:

[1] При U n номинальное напряжение сети: HV - U n ≥ 60 кВ ; MV - 1 кВ n ≤ 49,5 кВ .

Об авторе: Мануэль Болотинья
- Диплом в области электротехники - Энергетика и энергетические системы (1974 - Высший технический институт / Лиссабонский университет)
- Магистр электротехники и вычислительной техники (2017 - Faculdade de Ciências e Tecnologia / Nova University of Lisbon)
- старший консультант по подстанциям и энергосистемам; Профессиональный инструктор

Похожие сообщения:

.

Электрическое заземление - методы и типы заземления

Электрическое заземление - компоненты, методы и типы заземления - Установка электрического заземления

Электрическое заземление, заземление, методы заземления, типы заземления, компоненты заземления и его характеристики Что касается электрического заземления для электрических установок.

Что такое электрическое заземление?

Для соединения металлических (проводящих) частей электрического прибора или установок с землей (землей) называется Заземление или Заземление .

Другими словами, соединение металлических частей электрических машин и устройств с пластиной заземления или заземляющим электродом (который находится во влажной земле) через толстый проводящий провод (который имеет очень низкое сопротивление) в целях безопасности известен как Заземление .

«Заземление», скорее, означает подключение части электрического оборудования, такой как металлическое покрытие, клемма заземления розеток, опорные провода, которые не проводят ток на землю.Заземление можно назвать соединением нейтральной точки системы электроснабжения с землей, чтобы избежать или минимизировать опасность во время разряда электрической энергии.

Полезно знать

Разница между заземлением, заземлением и соединением

Позвольте мне устранить путаницу между заземлением, заземлением и соединением.

Заземление и Заземление - это те же термины, которые используются для заземления. Заземление - это обычно слово , используемое для заземления в стандартах Северной Америки , таких как IEEE, NEC, ANSI и UL и т. Д., В то время как Заземление используется в европейских стандартах , странах Содружества и Великобритании, таких как IS и IEC и т. Д.

Слово Соединение используется для соединения двух проводов (а также проводов, труб или приборов вместе. Соединение известно как соединение металлических частей различных машин, которые, как считается, не пропускают электрический ток при нормальной работе. машин, чтобы вывести их на одинаковый уровень электрического потенциала.

Почему важно заземление?

Основная цель заземления состоит в том, чтобы избежать или минимизировать опасность поражения электрическим током, пожара из-за утечки тока на землю по нежелательному пути и гарантировать, что потенциал токоведущего проводника не поднимется относительно земли, чем это предусмотрено. изоляция.

Когда металлическая часть электроприборов (части, которые могут проводить или пропускать электрический ток) вступает в контакт с проводом под напряжением, возможно, из-за неисправности установки или повреждения изоляции кабеля, металл заряжается и статический заряд накапливается на это .Если человек прикоснется к такому заряженному металлу , получится сильный шок.

Чтобы избежать таких случаев, системы электропитания и части приборов должны быть заземлены, чтобы переносить заряд непосредственно на землю. Вот почему нам необходимо электрическое заземление или заземление в электрических установках.

Ниже приведены основные потребности заземления.

  • Для защиты жизни людей, а также обеспечения безопасности электрических устройств и приборов от тока утечки.
  • Для поддержания постоянного напряжения в исправной фазе (при отказе какой-либо одной фазы).
  • Для защиты электрических систем и зданий от освещения.
  • Для выполнения функций обратного проводника в системе электрической тяги и связи.
  • Во избежание риска возгорания в электрических установках.
Различные термины, используемые в электрическом заземлении
  • Земля: Надлежащее соединение между электрическими установками через проводник с заглубленной пластиной в земле известно как Земля.
  • Заземленный: Когда электрическое устройство, прибор или системы электропроводки соединены с землей через заземляющий электрод, это называется заземленным устройством или просто «заземленным».
  • С твердым заземлением: Когда электрическое устройство, прибор или электрическая установка подключаются к заземляющему электроду без предохранителя, прерывателя цепи или сопротивления / сопротивления, это называется «глухозаземленным».
  • Заземляющий электрод: Когда проводник (или токопроводящая пластина) закопан в землю для системы электрического заземления.Известно, что это электрод земли. Заземляющие электроды бывают различной формы, например, токопроводящая пластина, токопроводящий стержень, металлическая водопроводная труба или любой другой проводник с низким сопротивлением.
  • Провод заземления : Провод заземления или токопроводящая полоса, соединяющая электрод заземления и электрическую систему и устройства, называемые проводом заземления.
  • Заземляющий проводник: Проводник, который подключается между различными электрическими устройствами и приборами, такими как распределительный щит, различные вилки и приборы и т. Д.Другими словами, провод между заземляющим проводом и электрическим устройством или прибором называется проводником заземления. Он может иметь форму металлической трубы (полностью или частично), металлической оболочки кабеля или гибкого провода.
  • Дополнительный главный заземляющий провод : Провод, подключенный между распределительным щитом и распределительным щитом, т.е. этот провод относится к вспомогательным основным цепям.
  • Сопротивление заземления: Это полное сопротивление между электродом заземления и землей в Ом (Ом).Сопротивление заземления - это алгебраическая сумма сопротивлений проводника заземления, провода заземления, заземляющего электрода и земли.
Точки, которые необходимо заземлить

Заземление в любом случае не выполняется. Согласно правилам IE и нормам IEE (Института инженеров-электриков),

  • Штырь заземления 3-контактных розеток осветительных и 4-контактных вилок питания должен быть надежно и постоянно заземлен.
  • Все металлические корпуса или металлические покрытия, содержащие или защищающие любые линии электропитания или устройства, такие как трубы GI и кабелепроводы, содержащие кабели VIR или ПВХ, выключатели в железной оболочке, распределительные щиты с предохранителями и т. Д., Должны быть заземлены (заземлены).
  • Рама каждого генератора, стационарных двигателей и металлических частей всех трансформаторов, используемых для управления энергией, должна быть заземлена двумя отдельными, но разными соединениями с землей.
  • В трехпроводной системе постоянного тока средние проводники должны быть заземлены на электростанции.
  • Фиксирующие провода, предназначенные для воздушных линий, необходимо заземлить, подключив хотя бы одну жилу к заземляющему проводу.

Связанное сообщение: Тестирование электрических и электронных компонентов и устройств с помощью мультиметра

Компоненты системы заземления

Полная система электрического заземления состоит из следующих основных компонентов.

  • Провод заземления
  • Вывод заземления
  • Электрод заземления
Компоненты системы электрического заземления
Этот провод заземления
или провод заземления 9000 9000 система заземления, которая соединяет все металлические части электроустановки, например кабелепровод, каналы, коробки, металлические корпуса переключателей, распределительных щитов, переключателей, предохранителей, регулирующие и управляющие устройства, металлические части электрических машин, такие как двигатели, генераторы, трансформаторы и металлический каркас, на котором установлены электрические устройства и компоненты. как заземляющий провод или провод заземления, как показано на рис.

Сопротивление заземляющего проводника очень низкое. Согласно правилам IEEE, сопротивление между клеммой заземления потребителя и проводом непрерывности заземления (на конце) не должно превышать 1 Ом. Проще говоря, сопротивление заземляющего провода должно быть меньше 1 Ом .

Размер заземляющего проводника или провода заземления зависит от размера кабеля , используемого в электрической цепи .

Размер заземляющего проводника

Площадь поперечного сечения непрерывного заземляющего проводника не должна быть меньше половины площади поперечного сечения самого толстого провода, используемого при установке электропроводки .

Обычно размер неизолированного медного провода, используемого в качестве проводника заземления, составляет 3SWG. Но имейте в виду, что не используйте менее 14SWG в качестве заземляющего провода. Медная полоса также может использоваться в качестве заземляющего проводника вместо неизолированного медного провода, но не используйте ее, пока производитель не порекомендует ее.

Провод заземления или заземляющее соединение

Провод, соединяющий провод заземления и заземляющий электрод или пластину заземления, называется заземляющим стыком или «проводом заземления».Точка, где встречаются провод заземления и заземляющий электрод, называется «точкой соединения», как показано на рисунке выше.

Заземляющий провод - это последняя часть системы заземления, которая подключается к заземляющему электроду (который находится под землей) через точку заземления.

В заземляющем проводе должно быть минимальное количество стыков, а также они должны быть меньше по размеру и прямые по направлению.

Как правило, медный провод можно использовать в качестве заземляющего провода, но медная полоса также используется для установки на высоких площадях, и она может выдерживать высокий ток короткого замыкания из-за большей площади, чем у медного провода.

Жестко вытянутый неизолированный медный провод также используется в качестве заземляющего провода. В этом методе все заземляющие проводники подключаются к общим (одной или нескольким) точкам подключения, а затем заземляющий провод используется для подключения заземляющего электрода (заземляющей пластины) к точке подключения.

Для увеличения запаса прочности при установке в качестве заземляющего провода используются два медных провода для соединения металлического корпуса устройства с заземляющим электродом или пластиной заземления. Т.е. если мы используем два заземляющих электрода или заземляющие пластины, то будет четыре заземляющих провода.Не следует учитывать, что два заземляющих провода используются как параллельные пути для протекания токов повреждения, но оба пути должны работать должным образом, чтобы пропускать ток повреждения, поскольку это важно для большей безопасности.

Размер провода заземления

Размер или площадь провода заземления не должны быть меньше половины самого толстого провода, используемого в установке.

Наибольший размер провода заземления - 3SWG , минимальный - не менее 8SWG .Если используется провод 37 / .083 или ток нагрузки составляет 200A от напряжения питания, то рекомендуется использовать медную ленту вместо двойного заземляющего провода. Способы подключения заземляющего провода показаны на рис.

Примечание: мы опубликуем дополнительную статью о размере Земной плиты с простыми вычислениями ... Оставайтесь на связи.

Электрод заземления или заземляющая пластина

Металлический электрод или пластина, закапываемая в землю (под землей) и являющаяся последней частью системы электрического заземления.Проще говоря, последняя подземная металлическая (пластинчатая) часть системы заземления, которая связана с заземляющим проводом, называется заземляющей пластиной или заземляющим электродом.

В качестве заземляющего электрода можно использовать металлическую пластину, трубу или стержень, который имеет очень низкое сопротивление и безопасно переносит ток короткого замыкания на землю.

Размер заземляющего электрода

В качестве заземляющего электрода можно использовать как медь, так и железо.

Размер заземляющего электрода (в случае меди)

2 × 2 (два фута шириной и длиной) и толщиной 1/8 дюйма.. Т.е. 2 ’x 2’ x 1/8 ″ . ( 600x600x300 мм )

В случае железа

2 ′ x2 ′ x ¼ ” = 600x600x6 мм

Рекомендуется закапывать заземляющий электрод во влажную землю. Если это невозможно, налейте воду в трубу GI (оцинкованное железо), чтобы обеспечить влажность.

В системе заземления установите заземляющий электрод в вертикальное положение (под землей), как показано на рис. Кроме того, нанесите слой порошкообразного угля и извести толщиной 1 фут (около 30 см) вокруг пластины заземления (не путайте с электродом заземления и пластиной заземления, поскольку они оба являются одним и тем же).

Это действие позволяет увеличить размер заземляющего электрода, что обеспечивает лучшую целостность цепи в земле (система заземления), а также помогает поддерживать влажность вокруг пластины заземления.

P.S: Мы опубликуем пример расчета размеров заземляющего электрода… Оставайтесь на связи.

Полезно знать:

Не используйте кокс (после сжигания угля в печи для выделения всех газов и других компонентов оставшиеся 88% углерода называют коксом) или каменный уголь вместо древесного угля (древесный уголь), потому что это вызывает коррозию пластины заземления.

Т.к. уровень воды в разных районах разный; поэтому глубина установки заземляющего электрода также различается в разных областях. Но глубина для установки заземляющего электрода должна быть не менее 10 футов (3 метра) и должна быть ниже 1 фут ( 304,8 мм ) от постоянного уровня воды.

Двигатели , Генератор , Трансформаторы и т. Д. Должны быть подключены к заземляющему электроду в двух разных местах.

Размер пластины заземления или электрода заземления для небольшой установки

При небольшой установке используйте металлический стержень (диаметр = 25 мм (1 дюйм) и длина = 2 м (6 футов) вместо пластины заземления для системы заземления. Металлическая труба должна быть На 2 метра ниже поверхности земли. Для поддержания влажности поместите 25 мм (1 дюйм) угольно-известковую смесь вокруг пластины заземления.

Для эффективности и удобства вы можете использовать медные стержни от 12,5 мм (0,5 дюйма) до 25 мм. (1 дюйм) в диаметре и 4 м (12 футов) в длину.Обсудим способ установки стержневого заземления.

Методы и типы электрического заземления

Заземление можно выполнить разными способами. Ниже описаны различные методы, применяемые для заземления (внутри дома или на заводе и другом подключенном электрическом оборудовании и машинах).

Пластинчатое заземление:

В системе пластинчатого заземления пластина из меди с размерами 60 см x 60 см x 3,18 мм (т.е. 2 фута x 2 фута x 1/8 дюйма ) или оцинкованного железа (GI) размером 60 см x 60 см x 6,35 мм (2 фута x 2 фута x ¼ дюйма) закапывают вертикально в землю (земляная яма), высота которой не должна быть меньше 3 м. (10 футов) от уровня земли.

Для правильной системы заземления выполните шаги, указанные выше в (Введение в заземляющую пластину), чтобы поддерживать влажность вокруг заземляющего электрода или пластины заземления.

Заземление трубы:

Гальванизированная сталь и перфорированная труба утвержденной длины и диаметра укладываются вертикально во влажную почву в такой системе заземления.Это самая распространенная система заземления.

Размер используемой трубы зависит от силы тока и типа почвы. Размер трубы обычно составляет 40 мм (1,5 дюйма) в диаметре и 2,75 м (9 футов) в длину для обычной почвы или больше для сухой и каменистой почвы. Влажность почвы будет определять длину трубы, которую предстоит заглубить, но обычно она должна составлять 4,75 м (15,5 фута).

Стержневое заземление

это тот же метод, что и заземление труб.Медный стержень диаметром 12,5 мм (1/2 дюйма) или 16 мм (0,6 дюйма) из оцинкованной стали или полый участок 25 мм (1 дюйм) трубы GI длиной более 2,5 м (8,2 фута) закапывают в землю вертикально вручную или с помощью пневмомолота. Длина электродов, встроенных в почву, снижает сопротивление земли до желаемого значения.

Система заземления с медными стержневыми электродами
Заземление через Waterman

В этом методе заземления трубы водовода (оцинкованные GI) используются для заземления.Обязательно проверьте сопротивление труб GI и используйте зажимы заземления, чтобы минимизировать сопротивление для правильного заземления.

Если в качестве заземляющего провода используется многожильный провод, очистите концы жил провода и убедитесь, что он находится в прямом и параллельном положении, которое затем можно плотно подсоединить к трубе гидросистемы.

Заземление из ленты или проволоки:

При этом методе заземления зачищайте электроды сечением не менее 25 мм x 1.6 мм (1 дюйм x 0,06 дюйма) закапывают в горизонтальные траншеи минимальной глубиной 0,5 м. Если используется медь с поперечным сечением 25 мм x 4 мм (1 дюйм x 0,15 дюйма) и размером 3,0 мм, 2 , если это оцинкованное железо или сталь.

Если используются круглые проводники, их поперечное сечение не должно быть слишком маленьким, скажем, менее 6,0 мм 2 , если это оцинкованный чугун или сталь. Длина проводника, закопанного в землю, обеспечит достаточное сопротивление заземления, и эта длина не должна быть меньше 15 м.

Общий метод установки электрического заземления (шаг за шагом)

Обычный метод заземления электрического оборудования, устройств и приборов следующий:

  1. Прежде всего, выройте яму 5x5 футов (1,5 × 1,5 м) около 20-30 футов (6-9 метров) в земле. (Обратите внимание, что глубина и ширина зависят от характера и структуры грунта).
  2. Закопайте подходящую медную пластину (обычно 2 x 2 x 1/8 дюйма (600 x 600 x 300 мм) в этой яме в вертикальном положении.
  3. Надежный заземляющий провод через гайки с двух разных мест на пластине заземления.
  4. Используйте два провода заземления с каждой пластиной заземления (в случае двух пластин заземления) и закрепите их.
  5. Для защиты стыков от коррозии нанесите смазку вокруг них.
  6. Собрать все провода в металлическую трубу от заземляющего электрода (ов). Убедитесь, что труба находится на высоте 1 фута (30 см) над поверхностью земли.
  7. Чтобы поддерживать влажность вокруг земной плиты, поместите 30-сантиметровый слой порошкообразного древесного угля (древесного угля) и смеси извести вокруг земной плиты вокруг земной плиты.
  8. Используйте болты с гайкой и гайкой, чтобы плотно подсоединить провода к опорным плитам машин. Каждая машина должна быть заземлена в двух разных местах. Минимальное расстояние между двумя заземляющими электродами должно составлять 10 футов (3 м).
  9. Провод заземления, который соединяется с корпусом и металлическими частями всей установки, должен быть плотно подключен к заземляющему проводу. Обязательно используйте непрерывность, используя тест на непрерывность.
  10. Наконец (но не в последнюю очередь) протестируйте всю систему заземления с помощью тестера заземления.Если все идет по планировке, то яму засыпьте землей. Максимально допустимое сопротивление заземления составляет 1 Ом. Если оно больше 1 Ом, увеличьте размер (не длину) заземляющего провода и проводов заземления. Держите внешние концы труб открытыми и время от времени поливайте воду, чтобы поддерживать влажность вокруг заземляющего электрода, что важно для лучшей системы заземления.
Спецификация SI для заземления

Ниже приведены различные спецификации относительно заземления, рекомендованные индийскими стандартами.Вот несколько;

  • Заземляющий электрод нельзя располагать (устанавливать) близко к зданию, система заземления которого заземляется, на расстоянии не менее 1,5 м.
  • Сопротивление заземления должно быть достаточно низким, чтобы протекание тока было достаточным для срабатывания защитных реле или срабатывания предохранителей. Это значение непостоянно, так как оно меняется в зависимости от погоды, потому что оно зависит от влажности (но не должно быть меньше 1 Ом).
  • Заземляющий провод и заземляющий электрод будут из одного материала.
  • Заземляющий электрод всегда следует размещать в вертикальном положении внутри земли или ямы, чтобы он мог контактировать со всеми различными слоями земли.

Связанные сообщения:

Опасности незаземления системы питания

Как подчеркивалось ранее, заземление обеспечивается в порядке

  • Во избежание поражения электрическим током
  • Во избежание риска возгорания в результате тока утечки на землю через нежелательный путь и
  • Чтобы гарантировать, что ни один из проводников с током не поднимется до потенциала по отношению к общей массе земли, чем его проектная изоляция.

Однако, если чрезмерный ток не заземлен, приборы будут повреждены без помощи предохранителя. Следует отметить, что на их генерирующих станциях происходит заземление чрезмерного тока, поэтому по заземляющим проводам ток очень мал или отсутствует вообще. Следовательно, это означает, что нет необходимости заземлять какой-либо из проводов (токоведущих, заземляющих и нулевых), содержащихся в ПВХ. Заземлить токоведущий провод катастрофически.

Я видел человека, убитого просто потому, что провод под напряжением был отрезан от верхней стойки и упал на землю, пока земля была влажной.Чрезмерный ток заземляется на генерирующих станциях, и если заземление вообще неэффективно из-за короткого замыкания, на помощь придут прерыватели замыкания на землю. Предохранитель помогает только тогда, когда передаваемая мощность превышает номинальную мощность наших приборов, он блокирует ток от достижения наших приборов, сгорая и защищая наши приборы в процессе.

В наших электроприборах, если чрезмерные токи не заземлены, мы испытаем сильный ток. Заземление в электроприборах происходит только тогда, когда возникает проблема, и оно должно спасти нас от опасности.Если в электронной установке металлическая часть электроприбора вступает в прямой контакт с проводом под напряжением, что может быть вызвано, возможно, неисправностью установки или иным образом, металл будет заряжен и на нем будет накапливаться статический заряд.

Если вы случайно прикоснетесь к металлической части в этот момент, вас поразит удар. Но если металлическая часть прибора заземлена, заряд будет передаваться на землю, а не накапливаться на металлической части прибора. Ток не проходит через заземляющие провода в электроприборах, он протекает только при возникновении проблем и только для направления нежелательного тока на землю, чтобы защитить нас от сильного удара.

Кроме того, если провод под напряжением случайно (в неисправной системе) касается металлической части машины. Теперь, если человек коснется этой металлической части машины, то через его тело будет протекать ток на землю, следовательно, он будет поражен электрическим током, что может привести к серьезным травмам, вплоть до смерти. Вот почему так важно заземление?

Электрическое заземление ... Продолжение следует ...

Пожалуйста, подпишитесь ниже, если вы хотите получить следующий пост о Заземление / заземление , например:

  • Рассчитайте сечение заземляющего проводника, заземления Свинцовые и заземляющие электроды для различных электрических устройств и оборудования, таких как двигатели, трансформаторы, домашняя электропроводка и т. Д., Путем простых расчетов
  • Цепь заземления и ток замыкания на землю
  • Защита системы заземления и дополнительных устройств, используемых в системе заземления / заземления
  • Пункты, которые следует запомнить при обеспечении заземления
  • Важные инструкции по правильной системе заземления
  • Правила электроснабжения относительно заземления
  • Как проверить сопротивление заземления с помощью тестера заземления
  • Как проверить сопротивление контура заземления с помощью амперметра и вольтметра
  • Многократное защитное заземление
  • И многое другое….

Похожие сообщения:

.

Смотрите также