Схема подключения заземления


Схема подключения заземления в загородном доме

Полную инструкцию по заземлению и молниезащите для частного дома (в картинках) смотрите на отдельной странице.

Сегодня практически каждый загородный дом оснащен электрическими приборами. Безопасность их эксплуатации обеспечивается соединением установленного в помещениях электрооборудования с заземляющим устройством. Грамотно выполненное защитное заземление исключит вероятность поражения людей электрическим током и предотвратит выход из строя бытовой техники и сложных технических устройств от воздействия перенапряжений, если они защищаются УЗИП. Выбор схемы подключения зависит от различных факторов. В частном доме, в отличие многоквартирного, заземление можно сделать самостоятельно. Разобраться в вопросе его подключения поможет данная инструкция.

Основные элементы схемы подключения заземления загородного дома и правила по их выполнению

Схема подключения заземления в загородном доме выглядит следующим образом: электроприбор— розетка — электрический щит — заземляющий проводник — контур заземления — земля.

Подключение начинается с выполнения на придомовом участке заземляющего устройства в соответствие с правилами, определенными в главе 1.7 ПУЭ 7-го издания. Заземлитель представляет собой металлическую конструкцию, имеющую большую площадь контакта с землей. Предназначен для выравнивания разности потенциалов и уменьшения потенциала заземленного оборудования, в случае замыкания на корпус или появления избыточного напряжения в электросети. Конструкция и глубина его установки определяется исходя из сопротивления грунта на участке (например, сухой песок или влажный чернозем).

От выполненного на участке заземляющего устройства (заземления) прокладываем заземляющий проводник, который подключаем к главной заземляющей шине, с использованием болтового соединения, зажима или сварки. Выбираем проводник сечением не менее 6 мм2 для меди и 50 мм2 для стали, при этом он должен соответствовать требованиям к защитным проводникам, указанным в таблице 54.2 ГОСТ Р 50571.5.54-2013, а для системы ТТ иметь сечение не менее 25 мм2 для меди. Если проводник голый и прокладывается в земле, то его сечение должно соответствовать приведенному в таблице 54.1 ГОСТ Р ГОСТ Р 50571.5.54-2013.

В электрощитке заземляющий проводник через шину заземления соединяется с защитными проводниками, проложенными к розеткам, имеющим заземляющий контакт и остальным электроприемникам в доме. В результате чего, каждый электроприбор оказывается подключенным к системе заземления.

Зависимость схемы подключения заземления от контура заземления

Если у столба линии электропередач выполнено повторное заземление, то схема подключения заземления в загородном доме выполняется по системам TN-C-S или TT. Когда состояние сетей не вызывает опасений, в качестве заземляющего устройства дома следует использовать повторное заземление линии и подключать дом в соответствии с системой заземления TN-C-S. Если воздушная линия старая, либо качество выполнения повторных заземлений подлежит сомнению, лучше выбрать систему ТТ и оборудовать индивидуальное заземляющее устройство на придомовом участке.

Для заземляющего устройства в первую очередь следует использовать естественные заземлители - сторонние проводящие части, имеющие непосредственный контакт с грунтом (водопроводы, трубы скважин, металлические и железобетонные конструкции загородного дома и прочее). (см. п.1.7.54, 1.7.109 ПУЭ 7-го издания).

При отсутствии таковых, выполняем искусственное заземляющее устройство, используя вертикальные или горизонтальные электроды, которые вкапываем в землю. Выбор конфигурации заземлителя главным образом от требуемого сопротивления и особенностей придомового участка.

При отсутствии таковых, выполняем искусственное заземляющее устройство, используя вертикальные или горизонтальные электроды, которые вкапываем в землю. Выбор конфигурации заземлителя главным образом от требуемого сопротивления и особенностей придомового участка.

Наиболее эффективен в использовании, если на вашем участке почва представлена суглинком, торфом, насыщенным водой песком, обводненной глиной. Стандартная длина стержней составляет от 1,5‑х до 3‑х м. Выбирая длину вертикальных электродов, исходим из водонасыщенности вмещающих пород на участке. Заглубленные грунт вертикальные заземлители объединяются горизонтальным электродом, например, полосой, а для минимизации экранирования располагаются на расстоянии, соразмерном длине самих штырей.

Конструкцию заземляющего устройства рекомендуют располагать на расстоянии одного метра от фундамента строения (см. п. 1.7.94 ПУЭ 7-го издания).

Зависимость схемы подключения от типа системы заземления

Заземление объектов жилого фонда выполняют по следующим системам: ТN (подсистемы TN-C, TN-S, TN-C-S) или ТТ. Первая буква в названии обозначает заземление источника питания, вторая – заземление открытых частей электрооборудования.

Последующие буквы после N указывают на совмещение в одном проводнике или разделение функций нулевого рабочего и нулевого защитного проводников. S - нулевой рабочий (N) и нулевой защитный (РЕ) проводники разделены. С - функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике (РЕN-проводник).

Электробезопасность обеспечивается полноценно, когда уменьшение сопротивления заземлителя не влечет за собой увеличения показателей тока замыкания на землю. Рассмотрим, как схема подключения заземления зависит от выполненной на объекте системы электрической сети.

Система заземления TN-S


Рисунок 1. Система TN-S

На объектах, оборудованных электросетью по системе TN-S, нулевые рабочий и защитный проводники разделены по всей длине, и в случае пробоя изоляции фазы, аварийный ток отводится по защитному РЕ-проводнику. Устройства УЗО и дифавтоматы, реагирующие на появление утечки тока через защитный ноль, отключают сеть с нагрузкой.

Достоинством подсистемы заземления TN-S является надежная защита электрооборудования и человека от поражения аварийным током при пользовании электросетями. За счет чего данную систему относят к наиболее современной и безопасной.

Для выполнения заземления по системе TN-S, требуется прокладка от трансформаторной подстанции отдельного провода заземления к своему строению, что приведет к значительному удорожанию проекта. По этой причине, для заземления объектов частного сектора, подсистема заземления TN-S практически не используется.

Система заземления TN-C. Необходимость перехода на ТN-C-S


Рисунок 2. Система TN-S

Заземление по системе TN-C наиболее распространено для старых построек жилого фонда. Преимуществом является экономичность и проста ее выполнения. Существенным недостатком - отсутствие отдельного проводника РЕ, что исключает наличие в розетках загородного дома заземления и возможности уравнивания потенциалов в ванной.

К загородным постройкам электрических ток подводится по воздушным линиям. К самому строению подходят два проводника: фазный L и совмещенный PEN. Подключить заземление можно, только при наличии в частном доме трехжильной проводки, что требует переделки системы TN-C на TN-C-S, путем разделения нулевого рабочего и нулевого защитного проводника в электрическом щите (см. п. 1.7.132 ПУЭ 7-го издания).

Подключение заземления по системе TN-C-S

Для подсистемы заземления TN-C-S характерно объединение нулевого рабочего и нулевого защитного проводников на участке от линий электропередач до ввода в здание. Заземление по данной системе достаточно простое в техническом исполнении, за счет чего рекомендуется для широкого применения. К недостатку можно отнести потребность в постоянной модернизации, во избежание обрыва PEN проводника, в результате чего электроприборы могут оказаться под опасным потенциалом.

Рассмотрим схему подключения заземления в загородном доме по системе TN-C-S на примере перехода к ней от системы TN-C.


Рисунок 3. Схема главного распределительного щита

Как уже отмечалось, для получения трехжильной проводки, необходимо произвести правильное разделение PEN проводника в распределительном щитке дома. Начинаем с того, что в электрощит устанавливаем шину с обеспечением прочной металлической связи с ним, и подключаем к этой шине идущий со стороны линии электропередач объединенный проводник PEN. Шину PEN соединяем перемычкой со следующей установленной шиной РЕ. Теперь шина PEN выступает в качестве шины нулевого рабочего проводника N.


Рисунок 4. Схема подключения заземления (переход с TN-C на TN-C-S)


Рисунок 5. Схема подключения заземления TN-C-S

Выполнив указанные подключения, соединяем распределительный щиток с заземлителем: от заземляющего устройства заводим проводна шину РЕ. Таким образом, в результате несложной модернизации, мы оснастили дом тремя отдельными проводами (фазным, нулевым защитным и нулевым рабочим).

Правилами устройства электроустановок требуется выполнение повторного заземления для РЕ - и РEN-проводников на вводе в электроустановки, с использованием, в первую очередь, естественных заземлителей, сопротивление которых при напряжении электросети 380/220 В должно быть не более 30 Ом (см. п. 1.7.103 ПУЭ 7-го издания).

Подключение заземления по системе TТ


Рисунок 6. Система TT

Другим вариантом схемы является подключения заземления загородного дома по системе ТТ с глухозаземленной нейтралью источника тока. Открытые токопроводящие элементы электрооборудования такой системы подсоединены к заземляющему устройству, не имеющему электрической связи с заземлителем нейтрали источника питания.

При этом должно соблюдаться следующее условие: значение произведения величины тока срабатывания устройства защиты (Iа) и суммарного сопротивления заземляющего проводника и заземлителя (Rа) не должно превышать 50 В (см. п.1.7.59 ПУЭ). Rа Iа ≤ 50 В.

Для соблюдения этого условия “Инструкция по устройству защитного заземления и уравнивания потенциалов в электроустановках” И 1.03-08 рекомендует выполнять заземляющее устройство с сопротивлением 30 Ом. Данная система достаточно востребована на сегодняшний день и применяется для частных, преимущественно мобильных построек, при невозможности обеспечения достаточного уровня электробезопасности системой TN.

Заземление по системе TТ не требует разделения совмещенного PEN проводника. Каждый из подходящих к дому отдельных проводов подсоединяем к изолированной от электрощита шине. А сам PEN проводник, в таком случае, считаем нулевым проводов (нулем).


Рисунок 7. Схема подключения заземления по системе TT


Рисунок 8. Схема подключения заземления и УЗО по системе TT

Как следует из схемы, системы TN-S и ТТ очень похожи между собой. Отличие состоит в полном отсутствии у ТТ электрической связи между заземляющим устройством и PEN проводником, что, в случае отгорания последнего со стороны источника питания, гарантирует отсутствие избыточного напряжения на корпусе электрических приборов. В этом и состоит очевидное преимущество системы ТТ, обеспечивающее более высокий уровень безопасности и надежности в эксплуатации. Недостатком ее использования можно назвать лишь дороговизну, поскольку для защиты пользователей при косвенном прикосновении, обязательна установка дополнительных устройств защитного отключения питания (УЗО и реле напряжения), что, в свою очередь, требует прохождение апробации и заверение специалистом энергонадзора.

Заключение

Схема заземления в общем виде представляет собой соединение ее элементов: электрооборудования, вводно-распределительного щита, заземляющего проводника РЕ, заземлителя.

Для установки заземляющего устройства в загородном доме необходимо разобраться в особенностях его подключения, в зависимости от следующих факторов:

  • способ питания электрической сети (воздушными линиями или кабелем от трансформаторной подстанции)
  • тип грунта на придомовом участке, где выполняется контур заземления.
  • наличие системы молниезащиты, дополнительных источников питания или специфического оборудования.

Выполняя подключение заземления самостоятельно, необходимо руководствоваться положениями раздела 1.7 Правил устройства электроустановок. При невозможности использования естественных заземлителей, выполняем заземляющее устройство с применением искусственных заземлителей.. Заземление частного дома может быть выполнено по двум системам: TN-C-S или ТТ. Наиболее широкое применение получила модернизированная система TN-C - TN-C-S, за счет простоты ее технического исполнения. Для обеспечения электробезопасности загородного дома по системе TN-C-S, требуется разделение PEN проводника, на нулевой рабочий и нулевой защитный проводники.

Выполнив контур заземления, необходимо проверить качество его монтажа, и произвести замеры сопротивления на соответствие нормам ПУЭ при помощи специальных приборов, для чего может потребоваться привлечение специалистов.

Полную инструкцию по заземлению и молниезащите для частного дома (в картинках) смотрите на отдельной странице.

Требуется консультация по организации заземления и молниезащиты для вашего объекта? Обратитесь в Технический центр ZANDZ.ru!


Смотрите также:


Смотрите также:

Электрическое заземление - методы и типы заземления

Электрическое заземление - компоненты, методы и типы заземления - Установка электрического заземления

Электрическое заземление, заземление, методы заземления, типы заземления, компоненты заземления и его характеристики Что касается электрического заземления для электрических установок.

Что такое электрическое заземление или заземление?

Для соединения металлических (проводящих) частей электрического прибора или установок с землей (землей) называется Заземление или Заземление .

Другими словами, соединение металлических частей электрических машин и устройств с пластиной заземления или заземляющим электродом (который находится во влажной земле) через толстый проводник (который имеет очень низкое сопротивление) в целях безопасности известен как Заземление .

«Заземление», скорее, означает подключение части электрического устройства, такой как металлическое покрытие, клемма заземления розеток, опорные провода, которые не проводят ток на землю.Заземление можно назвать соединением нейтральной точки системы электроснабжения с землей, чтобы избежать или минимизировать опасность при разряде электрической энергии.

Полезно знать

Разница между заземлением, заземлением и соединением

Позвольте мне устранить путаницу между заземлением, заземлением и соединением.

Заземление и Заземление - это те же термины, которые используются для заземления. Заземление - это обычно слово , используемое для заземления в стандартах Северной Америки , таких как IEEE, NEC, ANSI и UL и т. Д., В то время как Заземление используется в европейских стандартах , странах Содружества и Великобритании, таких как IS и IEC и т. Д.

Слово Соединение используется для соединения двух проводов (а также проводов, труб или приборов вместе. Соединение известно как соединение металлических частей различных машин, которые, как считается, не пропускают электрический ток при нормальной работе. машин, чтобы вывести их на одинаковый уровень электрического потенциала.

Почему важно заземление?

Основная цель заземления состоит в том, чтобы избежать или минимизировать опасность поражения электрическим током, пожара из-за утечки тока на землю по нежелательному пути и гарантировать, что потенциал токоведущего проводника не поднимется относительно земли, чем это предусмотрено. изоляция.

Когда металлическая часть электроприборов (части, которые могут проводить или пропускать электрический ток) вступает в контакт с токоведущим проводом, возможно, из-за сбоя в установке или повреждения изоляции кабеля, металл заряжается, и статический заряд накапливается на это .Если человек прикоснется к такому заряженному металлу , получится сильный шок.

Чтобы избежать таких случаев, системы электропитания и части приборов должны быть заземлены так, чтобы переносить заряд непосредственно на землю. Вот почему нам необходимо электрическое заземление или заземление в электрических установках.

Ниже приведены основные потребности заземления.

  • Для защиты жизни людей, а также для обеспечения безопасности электрических устройств и приборов от тока утечки.
  • Для поддержания постоянного напряжения в исправной фазе (при отказе какой-либо одной фазы).
  • Для защиты электрических систем и зданий от освещения.
  • Для выполнения функций обратного проводника в системе электрической тяги и связи.
  • Во избежание риска возгорания в электрических установках.
Различные термины, используемые в электрическом заземлении
  • Земля: Надлежащее соединение между электрическими установками через проводник с заглубленной пластиной в земле известно как Земля.
  • Заземленный: Когда электрическое устройство, прибор или системы проводки соединены с землей через заземляющий электрод, это называется заземленным устройством или просто «заземленным».
  • С глухим заземлением: Когда электрическое устройство, прибор или электрическая установка подключены к заземляющему электроду без предохранителя, прерывателя цепи или сопротивления / сопротивления, это называется «глухозаземленным».
  • Заземляющий электрод: Когда проводник (или токопроводящая пластина) закопан в землю для системы электрического заземления.Известно, что это электрод земли. Заземляющие электроды бывают различной формы, например, токопроводящая пластина, токопроводящий стержень, металлическая водопроводная труба или любой другой проводник с низким сопротивлением.
  • Провод заземления : Провод заземления или токопроводящая полоса, соединяющая электрод заземления и электрическую систему и устройства, называемые проводом заземления.
  • Заземляющий проводник: Проводник, который подключается между различными электрическими устройствами и приборами, такими как распределительный щит, различные вилки и приборы и т. Д.Другими словами, провод между заземляющим проводом и электрическим устройством или прибором называется проводником заземления. Он может иметь форму металлической трубы (полностью или частично), металлической оболочки кабеля или гибкого провода.
  • Дополнительный главный заземляющий провод : Провод, подключенный между распределительным щитом и распределительным щитом, т.е. этот провод относится к вспомогательным основным цепям.
  • Сопротивление заземления: Это полное сопротивление между заземляющим электродом и землей в Ом (Ом).Сопротивление заземления - это алгебраическая сумма сопротивлений проводника заземления, провода заземления, заземляющего электрода и земли.
Точки для заземления

Заземление все равно не выполняется. Согласно правилам IE и нормам IEE (Института инженеров-электриков),

  • Штырь заземления 3-контактных розеток осветительных и 4-контактных вилок питания должен быть надежно и постоянно заземлен.
  • Все металлические корпуса или металлические покрытия, содержащие или защищающие любые линии электропитания или устройства, такие как трубы GI и кабелепроводы, закрывающие кабели VIR или ПВХ, выключатели в железной оболочке, распределительные щиты с предохранителями и т. Д., Должны быть заземлены (заземлены).
  • Рама каждого генератора, стационарных двигателей и металлических частей всех трансформаторов, используемых для управления энергией, должна быть заземлена двумя отдельными, но разными соединениями с землей.
  • В трехпроводной системе постоянного тока средние проводники должны быть заземлены на электростанции.
  • Стойки, предназначенные для воздушных линий, необходимо заземлить, подключив к заземляющим проводам хотя бы одну жилу.

Связанное сообщение: Тестирование электрических и электронных компонентов и устройств с помощью мультиметра

Компоненты системы заземления

Полная система электрического заземления состоит из следующих основных компонентов.

  • Провод заземления
  • Вывод заземления
  • Электрод заземления
Компоненты системы электрического заземления
Этот провод заземления
или провод заземления 9000 система заземления, которая соединяет все металлические части электроустановки, например кабелепровод, каналы, коробки, металлические корпуса переключателей, распределительных щитов, переключателей, предохранителей, регулирующие и управляющие устройства, металлические части электрических машин, такие как двигатели, генераторы, трансформаторы и металлический каркас, на котором установлены электрические устройства и компоненты. как заземляющий провод или провод заземления, как показано на рис.

Сопротивление заземляющего проводника очень низкое. Согласно правилам IEEE, сопротивление между клеммой заземления потребителя и проводом непрерывности заземления (на конце) не должно превышать 1 Ом. Проще говоря, сопротивление заземляющего провода должно быть меньше 1 Ом .

Размер заземляющего проводника или провода заземления зависит от размера кабеля , используемого в электрической цепи .

Размер проводника непрерывного заземления

Площадь поперечного сечения непрерывного заземляющего проводника не должна быть меньше половины площади поперечного сечения самого толстого провода, используемого в установке электропроводки .

Обычно размер неизолированного медного провода, используемого в качестве проводника заземления, составляет 3SWG. Но имейте в виду, что не используйте менее 14SWG в качестве заземляющего провода. Медная полоса также может использоваться в качестве заземляющего проводника вместо неизолированного медного провода, но не используйте ее, пока производитель не порекомендует ее.

Провод заземления или заземляющее соединение

Провод, соединяющий провод заземления и заземляющий электрод или заземляющую пластину, называется заземляющим стыком или «заземляющим проводом».Точка, где встречаются провод заземления и заземляющий электрод, называется «точкой соединения», как показано на рисунке выше.

Заземляющий провод - это последняя часть системы заземления, которая подключается к заземляющему электроду (который находится под землей) через точку заземления.

В заземляющем проводе должно быть минимальное количество стыков, а также они должны быть меньше по размеру и прямые по направлению.

Как правило, медный провод можно использовать в качестве заземляющего провода, но медная полоса также используется для установки на высоких площадях, и она может выдерживать высокий ток короткого замыкания из-за большей площади, чем у медного провода.

Жестко вытянутый неизолированный медный провод также используется в качестве заземляющего провода. В этом методе все заземляющие проводники подключаются к общим (одной или нескольким) точкам подключения, а затем заземляющий провод используется для подключения заземляющего электрода (заземляющей пластины) к точке подключения.

Для увеличения запаса прочности при установке в качестве заземляющего провода используются два медных провода для соединения металлического корпуса устройства с заземляющим электродом или пластиной заземления. Т.е. если мы используем два заземляющих электрода или заземляющие пластины, то будет четыре заземляющих провода.Не следует учитывать, что два заземляющих провода используются как параллельные пути для протекания токов повреждения, но оба пути должны работать должным образом, чтобы пропускать ток повреждения, поскольку это важно для большей безопасности.

Размер провода заземления

Размер или площадь провода заземления не должны быть меньше половины самого толстого провода, используемого в установке.

Наибольший размер провода заземления - 3SWG , минимальный - не менее 8SWG .Если используется провод 37 / .083 или ток нагрузки составляет 200 А от напряжения питания, то рекомендуется использовать медную ленту вместо двойного заземляющего провода. Способы подключения заземляющего провода показаны на рис.

Примечание: мы опубликуем дополнительную статью о размере Земной плиты с простыми вычислениями ... Оставайтесь на связи.

Электрод заземления или пластина заземления

Металлический электрод или пластина, закапываемая в землю (под землей) и являющаяся последней частью системы электрического заземления.Проще говоря, последняя подземная металлическая (пластинчатая) часть системы заземления, которая связана с заземляющим проводом, называется заземляющей пластиной или заземляющим электродом.

В качестве заземляющего электрода можно использовать металлическую пластину, трубу или стержень, который имеет очень низкое сопротивление и безопасно переносит ток короткого замыкания на землю.

Размер заземляющего электрода

В качестве заземляющего электрода можно использовать как медь, так и железо.

Размер заземляющего электрода (в случае меди)

2 × 2 (два фута шириной и длиной) и толщиной 1/8 дюйма.. Т.е. 2 ’x 2’ x 1/8 ″ . ( 600x600x300 мм )

В случае железа

2 ′ x2 ′ x ¼ ” = 600x600x6 мм

Рекомендуется закапывать заземляющий электрод во влажную землю. Если это невозможно, налейте воду в трубу GI (оцинкованное железо), чтобы обеспечить влажность.

В системе заземления установите заземляющий электрод в вертикальное положение (под землей), как показано на рис. Кроме того, нанесите слой порошкообразного угля и извести толщиной 1 фут (около 30 см) вокруг пластины заземления (не путайте с электродом заземления и пластиной заземления, поскольку они оба являются одним и тем же).

Это действие позволяет увеличить размер заземляющего электрода, что приводит к лучшей непрерывности заземления (система заземления), а также помогает поддерживать влажность вокруг пластины заземления.

P.S: Мы опубликуем пример расчета размеров заземляющего электрода… Оставайтесь на связи.

Полезно знать:

Не используйте кокс (после сжигания угля в печи для выделения всех газов и других компонентов оставшиеся 88% углерода называют коксом) или каменный уголь вместо древесного угля (древесный уголь), потому что это вызывает коррозию пластины заземления.

Т.к. уровень воды в разных районах разный; поэтому глубина установки заземляющего электрода также различается в разных областях. Но глубина для установки заземляющего электрода должна быть не менее 10 футов (3 метра) и должна быть ниже 1 фут ( 304,8 мм ) от постоянного уровня воды.

Двигатели , Генератор , Трансформаторы и т. Д. Должны быть подключены к заземляющему электроду в двух разных местах.

Размер пластины заземления или электрода заземления для небольшой установки

При небольшой установке используйте металлический стержень (диаметр = 25 мм (1 дюйм) и длина = 2 м (6 футов) вместо пластины заземления для системы заземления. Металлическая труба должна быть На 2 метра ниже поверхности земли. Для поддержания влажности поместите 25 мм (1 дюйм) угольно-известковую смесь вокруг пластины заземления.

Для эффективности и удобства вы можете использовать медные стержни от 12,5 мм (0,5 дюйма) до 25 мм. (1 дюйм) в диаметре и 4 м (12 футов) в длину.Обсудим способ установки стержневого заземления.

Методы и типы электрического заземления

Заземление можно выполнить разными способами. Ниже описаны различные методы, применяемые для заземления (внутри дома или на заводе и другом подключенном электрическом оборудовании и машинах).

Пластинчатое заземление:

В системе пластинчатого заземления пластина из меди с размерами 60 см x 60 см x 3,18 мм (т.е. 2 фута x 2 фута x 1/8 дюйма ) или оцинкованного железа (GI) размером 60 см x 60 см x 6,35 мм (2 фута x 2 фута x дюйма) закапывают вертикально в землю (земляная яма), высота которой не должна быть меньше 3 м. (10 футов) от уровня земли.

Для правильной системы заземления выполните шаги, указанные выше в (Введение в заземляющую пластину), чтобы поддерживать влажность вокруг заземляющего электрода или пластины заземления.

Заземление трубы:

Гальванизированная сталь и перфорированная труба утвержденной длины и диаметра укладываются вертикально во влажную почву в такой системе заземления.Это самая распространенная система заземления.

Размер используемой трубы зависит от силы тока и типа почвы. Размер трубы обычно составляет 40 мм (1,5 дюйма) в диаметре и 2,75 м (9 футов) в длину для обычной почвы или больше для сухой и каменистой почвы. Влажность почвы будет определять длину трубы, которую предстоит заглубить, но обычно она должна составлять 4,75 м (15,5 футов).

Стержневое заземление

это тот же метод, что и заземление труб.Медный стержень диаметром 12,5 мм (1/2 дюйма) или 16 мм (0,6 дюйма) из оцинкованной стали или полый участок 25 мм (1 дюйм) трубы GI длиной более 2,5 м (8,2 фута) закапывают в землю вертикально вручную или с помощью пневмомолота. Длина электродов, встроенных в почву, снижает сопротивление земли до желаемого значения.

Система заземления с медными стержневыми электродами
Заземление через Waterman

В этом методе заземления трубы водовода (оцинкованные GI) используются для заземления.Обязательно проверьте сопротивление труб GI и используйте зажимы заземления, чтобы минимизировать сопротивление для правильного заземления.

Если в качестве заземляющего провода используется многожильный провод, очистите конец жилы провода и убедитесь, что он находится в прямом и параллельном положении, которое затем можно плотно подсоединить к трубе водяного коллектора.

Заземление из ленты или проволоки:

При этом методе заземления зачищайте электроды сечением не менее 25 мм x 1.6 мм (1 дюйм x 0,06 дюйма) закапывают в горизонтальные траншеи минимальной глубиной 0,5 м. Если используется медь с поперечным сечением 25 мм x 4 мм (1 дюйм x 0,15 дюйма) и размером 3,0 мм, 2 , если это оцинкованное железо или сталь.

Если используются круглые проводники, их поперечное сечение не должно быть слишком маленьким, скажем, менее 6,0 мм 2 , если это оцинкованный чугун или сталь. Длина проводника, закопанного в землю, обеспечит достаточное сопротивление заземления, и эта длина не должна быть меньше 15 м.

Общий метод установки электрического заземления (шаг за шагом)

Обычный метод заземления электрического оборудования, устройств и приборов следующий:

  1. Прежде всего, выкопайте яму 5x5 футов (1,5 × 1,5 м) около 20-30 футов (6-9 метров) в земле. (Обратите внимание, что глубина и ширина зависят от характера и структуры грунта).
  2. Закопайте подходящую медную пластину (обычно 2 x 2 x 1/8 дюйма (600 x 600 x 300 мм) в этой яме в вертикальном положении.
  3. Надежный заземляющий провод через гайки с двух разных мест на пластине заземления.
  4. Используйте два провода заземления с каждой пластиной заземления (в случае двух пластин заземления) и закрепите их.
  5. Для защиты стыков от коррозии нанесите смазку вокруг них.
  6. Собрать все провода в металлическую трубу от заземляющего электрода (ов). Убедитесь, что труба находится на высоте 1 фута (30 см) над поверхностью земли.
  7. Чтобы поддерживать влажность вокруг земной плиты, положите 30-сантиметровый слой порошкообразного древесного угля (порошкообразного древесного угля) и смеси извести вокруг земной плиты вокруг земной плиты.
  8. Используйте болты с наконечником и гайкой, чтобы надежно подсоединить провода к опорным плитам машин. Каждая машина должна быть заземлена в двух разных местах. Минимальное расстояние между двумя заземляющими электродами должно составлять 10 футов (3 м).
  9. Провод заземления, который соединяется с корпусом и металлическими частями всей установки, должен быть плотно подключен к заземляющему проводу. Обязательно используйте непрерывность, используя тест на непрерывность.
  10. Наконец (но не в последнюю очередь) проверьте всю систему заземления с помощью тестера заземления.Если все идет по планировке, то яму засыпьте землей. Максимально допустимое сопротивление заземления составляет 1 Ом. Если оно больше 1 Ом, увеличьте размер (не длину) заземляющего провода и проводов заземления. Держите внешние концы труб открытыми и время от времени поливайте воду, чтобы поддерживать влажность вокруг заземляющего электрода, что важно для лучшей системы заземления.
Спецификация SI для заземления

Ниже приведены различные спецификации относительно заземления, рекомендованные индийскими стандартами.Вот несколько;

  • Заземляющий электрод нельзя располагать (устанавливать) близко к зданию, система заземления которого заземляется, на расстоянии не менее 1,5 м.
  • Сопротивление заземления должно быть достаточно низким, чтобы протекание тока было достаточным для срабатывания защитных реле или срабатывания предохранителей. Это значение непостоянно, так как оно меняется в зависимости от погоды, потому что оно зависит от влажности (но не должно быть меньше 1 Ом).
  • Заземляющий провод и заземляющий электрод будут из одного материала.
  • Заземляющий электрод всегда следует размещать в вертикальном положении внутри земли или ямы, чтобы он мог контактировать со всеми различными слоями земли.

Связанные сообщения:

Опасности незаземления системы питания

Как подчеркивалось ранее, заземление предоставляется в порядке

  • Во избежание поражения электрическим током
  • Во избежание риска пожара в результате тока утечки на землю через нежелательный путь и
  • Чтобы гарантировать, что ни один из проводников с током не поднимется до потенциала по отношению к общей массе земли, чем его проектная изоляция.

Однако, если чрезмерный ток не заземлен, приборы будут повреждены без помощи предохранителя. Следует отметить, что на их генерирующих станциях происходит заземление чрезмерного тока, поэтому по заземляющим проводам ток очень мал или отсутствует вообще. Следовательно, это означает, что нет необходимости заземлять какой-либо из проводов (токоведущий, заземляющий и нейтральный), содержащихся в ПВХ. Заземлить токоведущий провод катастрофически.

Я видел человека, убитого просто потому, что провод под напряжением был отрезан от верхней стойки и упал на землю, пока земля была влажной.Чрезмерный ток заземляется на генерирующих станциях, и если заземление вообще неэффективно из-за короткого замыкания, вам помогут прерыватели замыкания на землю. Предохранитель помогает только тогда, когда передаваемая мощность превышает номинальную мощность наших приборов, он блокирует ток от достижения наших приборов, сгорая и защищая наши приборы в процессе.

В наших электроприборах, если чрезмерные токи не заземлены, мы испытаем сильный ток. Заземление в электроприборах происходит только тогда, когда возникает проблема, и оно должно спасти нас от опасности.Если в электронной установке металлическая часть электроприбора вступает в прямой контакт с проводом под напряжением, что может быть вызвано, возможно, неисправностью установки или иным образом, металл будет заряжен и на нем будет накапливаться статический заряд.

Если вы случайно прикоснетесь к металлической части в этот момент, вас поразит удар. Но если металлическая часть прибора заземлена, заряд будет передаваться на землю, а не накапливаться на металлической части прибора. Ток не проходит через заземляющие провода в электроприборах, он протекает только тогда, когда возникает проблема, и только для того, чтобы направить нежелательный ток на землю, чтобы защитить нас от сильного удара.

Кроме того, если находящийся под напряжением провод случайно (в неисправной системе) касается металлической части машины. Теперь, если человек коснется этой металлической части машины, то через его тело будет протекать ток на землю, следовательно, он получит удар током (удар током), что может привести к серьезным травмам, вплоть до смерти. Вот почему так важно заземление?

Электрическое заземление ... Продолжение следует ...

Пожалуйста, подпишитесь ниже, если вы хотите получить следующий пост о Заземление / заземление , например:

  • Рассчитайте сечение заземляющего проводника, заземления Свинцовые и заземляющие электроды для различных электрических устройств и оборудования, таких как двигатели, трансформаторы, домашняя проводка и т. Д., Путем простых вычислений
  • Цепь заземления и ток замыкания на землю
  • Защита системы заземления и дополнительных устройств, используемых в системе заземления при обеспечении заземления
  • Важные инструкции по правильной системе заземления
  • Правила электроснабжения относительно заземления
  • Как проверить сопротивление заземления с помощью тестера заземления
  • Как проверить сопротивление контура заземления с помощью амперметра и вольтметра
  • Многократное защитное заземление
  • И многое другое….

Похожие сообщения:

.

2 Объяснение простого автоматического выключателя утечки на землю (ELCB)

Обсуждаемые схемы автоматического выключателя утечки на землю будут контролировать уровень тока утечки в линии заземления электрических розеток вашего дома и отключат приборы при обнаружении неисправности. Здесь мы изучим 2 конструкции, в первой используются только транзисторы, а во второй - IC LM324.

Введение

Если с ними что-то пойдет не так, они мгновенно отключат сеть и прекратят дальнейшие связанные с этим потери.Здесь обсуждается простая схема ELCB.

В этой статье обсуждается простая схема прерывателя цепи утечки на землю, также называемая прерывателем цепи замыкания на землю.

После построения и установки схема будет бесшумно контролировать «исправность» заземления вашего дома и подключенного устройства.

Схема немедленно отключит сеть при обнаружении отсутствия заземления или утечки тока через корпус устройства.

Зачем нужен ELCB

Утечка тока через клемму заземления, вероятно, более опасна, чем короткое замыкание в домашней электропроводке.

Опасность короткого замыкания очевидна, и ее устранение в основном осуществляется с помощью предохранителя или автоматического выключателя.

Но утечки тока на землю могут оставаться скрытыми в течение многих лет, поглощая ваше драгоценное электричество, а также ослабляя или ухудшая состояние проводки и бытовых приборов.

Более того, если заземление не заземлено должным образом из-за неправильной проводимости или обрыва, утечка может превратиться в смертельный удар по корпусу устройства.

Минусы коммерческих устройств ELCB

Имеющиеся в продаже автоматические выключатели утечки на землю очень дороги и громоздки, что требует сложной процедуры установки.

Я разработал простую схему, которая не требует больших затрат, но прекрасно справляется с ситуацией. Устройство обнаружит любой ток, превышающий 5 мА в заземляющем проходе, и отключит сеть.

Подключенному устройству потребуется диагностика или полное устранение. Протекающий прибор не только расходует электроэнергию, но и может быть опасен для жизни.

Принципиальная схема с использованием транзисторов

Работа схемы

Предлагаемый прерыватель цепи замыкания на землю или ELCB использует простой принцип обнаружения сигнала переменного тока, а не приложенного или утечки напряжения.

Здесь утечка переменного тока может быть слишком маленькой, чтобы ее можно было обнаружить как разность потенциалов с использованием простой конфигурации обнаружения напряжения, поэтому утечка эффективно воспринимается как частота с использованием простого каскада звукового усилителя.

Как показано на схеме, простая сеть усилителей с начальной загрузкой образует основной каскад измерения устройства. Транзисторы T1 и T2 вместе с соответствующими пассивными компонентами подключены к небольшому двухкаскадному усилителю.

Введение R3 становится очень важным, поскольку он обеспечивает положительную обратную связь на вход, делая схему более стабильной и реагирующей на мельчайшие входные сигналы.

Катушка индуктивности L1 в основном имеет две обмотки, первичная обмотка, подключенная к точке заземления розетки, имеет меньшее количество витков, вторичная обмотка имеет в шесть раз больше витков и подключается к входу схемы через C1.

Роль L1 заключается в усилении любого переменного тока, наведенного в его первичную обмотку, что может произойти только в случае утечки через корпус устройства, подключенного к розетке.

Вышеупомянутое усиленное напряжение утечки дополнительно усиливается до уровня, достаточного для активации RL1, мгновенного отключения входа в прибор и индикации замыкания на землю.

Конденсатор C5 вместе с D3 и C4 образует стандартный бестрансформаторный источник питания для питания схемы.

D3 выполняет двойную функцию выпрямления и подавления скачков напряжения. Интересно, что основное заземление само становится отрицательным в цепи вместо нейтральной линии.

Кроме того, поскольку RL2 напрямую подключен к источнику питания через положительный полюс цепи и заземление, это просто означает, что если заземление станет слабым или отключится, реле отключится, отключая сеть переменного тока от устройства, поэтому оно эффективно указывает исправность заземления и предохраняет дом от неисправных или отсутствующих заземляющих соединений.

Перечень запчастей цепи ELCB.
  • R1 = 22K,
  • R2 = 4K7,
  • R3 = 100K,
  • R4 = 220E,
  • R5 = 1K,
  • R6 = 1M,
  • C1 = 0,22 / 50 В,
  • C2 = 47 мкФ / 25 В,
  • C4 = 10 мкФ / 250 В,
  • C5 = 2 мкФ / 400 В PPC,
  • T1, T2 = BC 547B,
  • T3 = BC 557B,
  • Реле = 12 В, 400 Ом, SPDT,
  • Все Диоды = 1N4007,

L1 = Катушка, намотанная на катушку, обычно используемую с сердечниками E (наименьшего размера), сначала намотайте 50 витков провода SWG 25, свяжите его и припаяйте, чтобы получить первичные клеммы с одной стороны шпульки.Теперь, используя медный провод 32 SWG, намотайте 300 витков на первичную обмотку, как и раньше, привяжите концы к другой стороне бобины пайкой. Вставьте и закрепите катушку внутри E-сердечников. Плотно закрепите его с помощью ПВХ-ленты

Как сделать самодельный выключатель утечки на землю (ELCB) с использованием IC 324

Автоматический выключатель утечки на землю - это безопасное электрическое устройство, используемое для контроля утечек тока через клемму заземления и выключения сети, когда эта утечка превышает определенный опасный уровень.

Введение

Обычно для изготовления этих устройств используются электромеханические концепции, однако здесь мы увидим, как можно сделать ELCB с использованием обычных электронных компонентов; мы также увидим, почему электронный аналог более эффективен, чем коммерческие электромеханические агрегаты.

Электронный ELCB может быть выполнен в трех версиях: в первой используется реле для переключения, вторая идея включает симистор, а третья концепция использует SSR или твердотельное реле для требуемых реализаций.

Для всех вышеупомянутых концепций функция запуска остается той же через каскад входной индуктивности.

Схема ELCB с использованием реле

Глядя на рисунок, мы видим, что вся схема сконцентрирована вокруг одного операционного усилителя от IC 324. Операционный усилитель сконфигурирован как инвертирующий усилитель с высоким коэффициентом усиления.

Операционный усилитель сконфигурирован как усилитель переменного тока с высоким коэффициентом усиления, и его чувствительность можно регулировать, изменяя значение R2, увеличение его значения увеличивает чувствительность схемы.

Любой минутный сигнал переменного тока, который может присутствовать на инвертирующем входе # 2 ИС, снимается через разделительный конденсатор С1 и мгновенно усиливается ИС.

Небольшой индукторный трансформатор подключен к вышеуказанному входу ИС. Первичная обмотка катушки индуктивности соединяется с проводом, который в конечном итоге заканчивается клеммой заземления или контактами различных 3-контактных розеток в помещении.

Трансформатор может быть обычным выходным трансформатором, используемым в каскаде выходного усилителя небольшого радиоприемника.

В случае утечки ток утечки проходит через первичную обмотку индуктора и увеличивается на вторичной обмотке.

Повышенный индуцированный переменный ток немедленно воспринимается входом IC и далее усиливается до желаемых уровней, так что тиристор переключается в ответ на запуск.

SCR, благодаря присущему ему свойству, мгновенно защелкивается и переводит реле в состояние проводимости.

Реле подает и отключает сетевое питание на трехконтактные розетки, переключает приборы и тем самым устраняет условия утечки на землю

Схема ELCB с использованием симистора

Вышеупомянутая схема также может быть реализована с использованием симистора, все остается то же самое, за исключением релейной ступени, которая теперь заменена симистором.

В нормальных условиях выход IC остается выключенным, и симистору разрешается проводить нагрузку и управлять ею.

Однако в момент обнаружения утечки на выходе ИС устанавливается высокий уровень, что приводит к срабатыванию тринистора и замыкает его анод на землю. Это подавляет ток затвора к симистору, который мгновенно прекращает проводить, отключая нагрузку и устраняя неблагоприятные условия.

Схема ELCB с использованием SSR или твердотельного реле

Устройства SSR, работающие от Mians, в настоящее время эффективно используются для переключения нагрузок, работающих от сети, более эффективно, чем реле, и, поскольку они электрически изолированы и твердотельные по своей природе, становится более желательным, чем обычное переключение такие устройства, как симисторы и реле.

Здесь, пока условия нормальные, SSR может получить необходимое входное напряжение запуска из схемы, однако в момент, когда ожидается утечка, схема запускает SCR, который, в свою очередь, блокирует входной триггер SSR на землю. . SSR мгновенно прекращает работу, выполняя намеченные действия, отключая нагрузку, и предотвращает любую возможную опасность.

Список деталей
  • R1 = 100K,
  • R2 = 1M,
  • R3, R4, R5 = 1K,
  • C1 = 0.01 мкФ
  • C2 = 100 мкФ / 25 В
  • L1 = обычный небольшой выходной трансформатор, используемый в транзисторных радиоприемниках.
  • SCR = BT169
  • Triac = BT 136 или более высокий ток типа
  • Операционный усилитель = ¼ IC324
  • SSR = Согласно пользовательским спецификациям.
  • Реле = 12 В, SPDT
О Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем сайта: https: //www.homemade-circuits.com /, где я люблю делиться своими новаторскими идеями и руководствами по схемам.
Если у вас есть запрос, связанный со схемой, вы можете взаимодействовать с ним через комментарии, я буду очень рад помочь!

.

Что такое электрическое заземление? - Определение, типы заземления и его значение в электрической системе

Определение: Процесс передачи непосредственного разряда электрической энергии непосредственно на землю с помощью провода с низким сопротивлением известен как электрическое заземление. Электрическое заземление выполняется путем подключения нетоковедущей части оборудования или нейтрали системы питания к земле.

В основном для заземления используется оцинкованное железо.Заземление обеспечивает простой путь к току утечки . Ток короткого замыкания оборудования проходит на землю с нулевым потенциалом. Таким образом защищает систему и оборудование от повреждений.

Типы электрического заземления

Электрооборудование в основном состоит из двух нетоковедущих частей. Эти части нейтральны по отношению к системе или корпусу электрического оборудования. Заземление этих двух нетоковедущих частей электрической системы можно разделить на два типа.

  • Заземление нейтрали
  • Заземление оборудования.

Заземление нейтрали

При заземлении нейтрали нейтраль системы напрямую соединяется с землей с помощью провода GI. Заземление нейтрали также называется заземлением системы. Такой тип заземления чаще всего применяется в системах со звездообразной обмоткой. Например, заземление нейтрали предусмотрено в генераторе, трансформаторе, двигателе и т. Д.

Заземление оборудования

Такой тип заземления предусмотрен для электрооборудования.Нетоковедущая часть оборудования, такая как их металлический каркас, соединяется с землей с помощью проводящего провода. Если в аппарате возникает какая-либо неисправность, ток короткого замыкания проходит через землю с помощью провода. Таким образом уберечь систему от повреждений.

Важность заземления

Заземление необходимо по следующим причинам

  • Заземление защищает персонал от тока короткого замыкания.
  • Заземление обеспечивает самый легкий путь прохождения тока короткого замыкания даже после выхода из строя изоляции.
  • Заземление защищает оборудование и персонал от скачков высокого напряжения и разряда молнии.

Заземление может быть выполнено путем электрического соединения соответствующих частей установки с некоторой системой электрических проводов или электродов, размещенных рядом с почвой или ниже уровня земли. Заземляющий мат или электрод под уровнем земли имеют плоский железный стояк, через который подключаются все нетоковедущие металлические части оборудования.

При возникновении короткого замыкания ток замыкания от оборудования протекает через систему заземления на землю и тем самым защищает оборудование от тока замыкания.Во время короткого замыкания в проводниках заземляющего мата поднимается напряжение, равное сопротивлению заземляющего мата, умноженному на замыкание на землю.

Контактный узел называется заземляющим. Металлические проводники, соединяющие части установки с заземлением, называются электрическими соединениями. Заземление и заземляющее соединение вместе называют системой заземления.

.

Схема электрических соединений и подключения автоматического ИБП / инвертора к дому

Схема электрических соединений автоматической системы ИБП (один провод под напряжением и обычная проводка)

Автоматические подключения ИБП / инвертора

В случае аварийного сбоя при подаче электроэнергии недоступен на электростанции, мы можем использовать автоматический инвертор / ИБП и батареи для бесперебойного подключения питания.

Мы покажем два основных ИБП / инвертора с подключением батарей к домашнему распределительному щиту.

  • Автоматический ИБП / инвертор с двумя проводами
  • Автоматическая разводка USP / инвертора с одним проводом под напряжением

Примечание. Для работы в безопасном режиме используйте 6 AWG ( 7/064 ″ или 16 мм 2 ) и сечение провода к для подключения ИБП к главной панели управления .

Автоматическая двухпроводная разводка ИБП / инвертора.

Здесь нет ракетостроения. Просто подключите исходящие провода нейтрали и напряжения к ИБП. Теперь подключите два исходящих провода нейтрали и фазы от ИБП / инвертора (в качестве выхода) к приборам, как показано на рис.1.

Проводка ИБП / инвертора с одним дополнительным проводом под напряжением

Как правило, мы знаем, что каждая точка нагрузки должна быть подключена через провод под напряжением (фаза) и нейтраль для нормальной работы. В приведенном ниже примере мы уже подключили фазу и нейтраль (от электростанции к силовому столбу и распределительному щиту) к каждому электроприбору, то есть к вентиляторам, точкам освещения и т. Д. Это то, что мы делаем в нашем распределительном щите для домашней проводки.

Теперь, в соответствии со схемой подключения ИБП ниже, подключите дополнительный провод (фазу) к тем приборам, к которым мы уже подключили фазный и нейтральный провода от (Power house и DB) (i.е., два провода в качестве фазы (под напряжением), как показано на рисунке ниже). И нет необходимости подключать дополнительный нейтральный провод от ИБП, поскольку он уже установлен и подключен ранее. Проще говоря, вам нужен только провод под напряжением для подключения к приборам, как показано на рис. 2. Теперь возникает вопрос: «Почему дополнительный фазный провод, а не нейтраль? … Да .. Прочтите следующую работу и работу схемы, чтобы получить представление.

Вы также можете прочитать:

Щелкните изображение, чтобы увеличить

Схема электрических соединений системы автоматического инвертора ИБП (один провод под напряжением)

Работа и эксплуатация подключения ИБП

(1) При отсутствии электроснабжения от электросети от электростанции

В этом случае электропитание будет продолжаться через фазный провод (выход ИБП), который подключен к батареям и ИБП, а затем к электрическим приборам (обратите внимание, что нейтраль уже подключена).Таким образом, первый однофазный провод, который уже был подключен перед установкой ИБП (т. Е. Провод под напряжением от главной платы к ИБП), будет неактивным, потому что источник питания недоступен из электростанции. В этом случае электрические приборы, подключенные через провод под напряжением от ИБП / инвертора, непрерывно потребляют накопленную электрическую энергию в батареях.

Связанные руководства:

(2) При восстановлении питания от электросети

Затем подача питания будет продолжаться через фазный провод (обратите внимание, что нейтраль уже подключена), который подключен к ИБП от главной платы (это будет заряжать вашу батарею), а затем от ИБП к подключенным электроприборам.Таким образом, второй провод (фаза или провод под напряжением), который подключается после установки ИБП (т. Е. Один провод под напряжением от ИБП), будет неактивным, потому что источник питания недоступен от ИБП и батарей (потому что это автоматическая система ИБП).

Как подключить ИБП / инвертор к распределительной плате?

На рисунке 3 ниже показано, как подключить ИБП / инвертор с батареями к главному распределительному устройству для непрерывного электроснабжения в случае сбоя в электросети.

Дополнительная проводка подключения к подключенной нагрузке и технике на две комнаты в доме. Как подключить автоматический ИБП / инвертор к домашней системе электроснабжения?

Щелкните изображение, чтобы увеличить

Как подключить ИБП / инвертор к распределительному щиту?

Цветовой код проводки:

Мы использовали Red для Live или Phase , Black для Neutral и Green для заземляющего провода в одной фазе.Вы можете использовать коды конкретных регионов, например, IEC - Международная электротехническая комиссия (Великобритания, ЕС и т. Д.) Или NEC (Национальный электротехнический кодекс [США и Канада], где:

NEC:

Однофазный 120 В переменного тока :

Черный = Фаза или Линия , Белый = Нейтраль и Зеленый / Желтый = Заземляющий провод

МЭК:

3 Фаза

AC:

Коричневый = Фаза или Линия , Синий = Нейтраль и Зеленый = заземляющий провод.

Общие меры предосторожности при игре с электричеством.

  • Отключите источник питания перед обслуживанием, ремонтом или установкой электрического оборудования.
  • Используйте кабель подходящего размера с помощью этого простого метода расчета (Как определить подходящий размер кабеля для электромонтажа)
  • Никогда не пытайтесь работать от электричества без надлежащего руководства и ухода.
  • Работать с электричеством только в присутствии лиц, обладающих хорошими знаниями и практической работой и опытом, умеющих обращаться с электричеством.
  • Прочтите все инструкции, руководства пользователя, предупреждения и строго следуйте им.
  • Самостоятельное выполнение электромонтажных работ опасно, а также незаконно в некоторых регионах. Прежде чем вносить какие-либо изменения в подключение электропроводки, обратитесь к лицензированному электрику или в энергоснабжающую компанию.
  • Автор не несет ответственности за какие-либо убытки, травмы или повреждения в результате отображения или использования этой информации, или если вы попробуете какую-либо схему в неправильном формате. Поэтому, пожалуйста! Будьте осторожны, потому что все дело в электричестве, а электричество слишком опасно.

Связанные сообщения:

Теперь, если вы все еще сталкиваетесь с трудностями или не понимаете схему подключения, не стесняйтесь оставлять комментарий или просто просмотрите другие соответствующие пошаговые руководства по схемам подключения ИБП / инвертора и подключению с помощью описание и работа.

Вы также можете прочитать другие Руководства по установке электропроводки.

.

Смотрите также