Расстояние контура заземления от фундамента здания по пуэ


Контур заземления, его устройство, расчет и схема

Устройство контура заземления, установка и проверка уровня сопротивления контура – это работы, необходимость которых обусловлена спасением жизни человека и предохранением зданий от пожаров. Для производства работ следует выполнять требования ПУЭ, знать способы производства работ по монтажу защитного контура.

Каждый новичок хочет знать, что же это такое заземление и его контур.

Устройство и принцип действия заземления

Защитное устройство и его основное назначение – соединение всех потребителей электричества, при помощи заземляющего провода с контуром защиты. Систем заземления 3, но в жилом помещении наиболее часто устанавливают систему с маркировкой TN – 5. Эта система предусматривает проведение ноля и земли двумя отдельными проводами.

При коротком замыкании или утечке тока с корпуса приборов снимается опасное напряжение и по проводу подается на контур защитного заземления. Он должен монтироваться и изготавливаться, выполняя требования ГОСТа. Нормы, предусматривают оборудование контура с учетом уровня сопротивления. На его величину влияют:

  • виды почвы;
  • влажность и уровень грунтовых вод;
  • глубина погружения заземлителей;
  • количества заземлителей в контуре;
  • материалы электрода и всех составляющих устройства.

По форме, контур заземления, согласно нормам СНиП, делают в форме равностороннего треугольника, из вертикальных заземлителей и горизонтальных электродов. Они должны располагаться на определенной глубине. Из этого значения и свойства грунта производится расчет контура заземления. Каждый вид грунта имеет свой уровень сопротивления растекания токов КЗ.

Для обустройства контура защиты лучшим вариантом будет:

  • торфяник;
  • суглинистая почва;
  • глинистая, с близко расположенными грунтовыми водами.

Худшими свойствами обладают каменистые участки грунта и монолитные скалы. На выбор влияют климатические особенности региона установки.

Проведение расчета защитного контура

Сопротивление контура заземления следует проводить, определив несколько значений:

  1. Определить удельное сопротивление почвы на участке.
  2. Выявить влажность грунта.
  3. Уровень солености почвы.
  4. Средней температуры в регионе.
  5. Расстояние от фундамента до контура.
  6. Размеров заземлителей и других деталей устройства.

Методика расчетов «проста» — нужно знать множество физических формул и иметь инженерное образование. Но, как правило, никакая методика выполнения расчетов не может учитывать все значения. Поэтому, проведя монтаж наружного контура заземления и измерив, значение сопротивления защиты – вы увидите, что расчет не совпадает с фактическим результатом.

По этой причине, для обустройства в данном регионе выполняется типовой проект, остается только провести изменения, учитывая удаление устройства от здания. И затем проводят измерение сопротивления контура, вносят изменения до достижения номинального значения сопротивления, не более 4 Ом в жилищном строительстве.

Поэтому, выбрав лучшую схему, соблюдая все размеры и глубину забивания заземлителей, подобрав качественный материал, правильно сделать работу для вашего жилья не составит труда. А рассчитать заземление нужно обязательно для крупных промышленных и торговых зданий.

Объекты, требующие оснащения контуром

Для безопасного проживания и условий труда, каждое помещение, в котором установлены промышленные или бытовые электроустановки обязано быть защищено.

Для этого, оборудуется как внутренний контур заземления, так и наружный. Защита должна быть установлена в помещениях:

  • С различными по мощности железными кожухами и корпусами приборов, станков и осветительных устройств.
  • В электрощитовых, в которых находятся стальные корпуса щитков, шкафов и другого электротехнического оборудования, а также в комплектных трансформаторных подстанциях (ктп).
  • В местах с металлоконструкциями, оболочками кабелей, проводов различного сечения, а также защитных стальных трубопроводов для кабелей.
  • Вторичная обмотка измерительного трансформатора.

Заземление не проводится:

  • для арматуры изоляторов и штырей, крепления их на опорах электропередачи;
  • оборудования установленного на заземленные корпуса электроустановок;
  • электроизмерительные устройства, автоматы защиты, установленные в электрощитках или на одной из стен камеры распределяющего устройства.

При особо оговоренных условиях может не заземляться металлическая защитная оболочка контрольного кабеля.

Наружный контур заземления потребует проведения земляных работ, поэтому, приготовьтесь к тяжелой и небыстрой работе.

Установка контура заземления

Способов установки несколько. Новая, но более затратная методика модульно-штырьевого монтажа всем хороша. Но этот способ мы рассмотрим несколько позже. Мы разберем классический монтаж контура заземления.

Сначала проводятся подготовительные работы.

Подготовка к монтажу

Определяемся с местом установки защиты. Лучшим решением будет расположение контура недалеко от здания и со стороны установки распределительного электрощита.

Исходя из требований пункта 1.7.111 ПУЭ — все вертикально и горизонтально расположенные электроды должны изготавливаться из меди, оцинкованного или обычного стального уголка или другого профиля. Окрашивать поверхность заземлителей нельзя, для лучшего токоотведения и обнаружения дефектов.

Для обустройства, нам потребуется 50 уголков толщиной полок — 5 мм и полоса шириной — 40 мм. Это основные материалы для изготовления самого контура. Также нам потребуются провода достаточного сечения, для обустройства внутреннего контура заземления и разделения проводки на нулевой провод и проводник земли.

Теперь готовим к работе лопату и начинаем выполнение основного этапа работ.

Монтаж защитного устройства

Копаем треугольную траншею — длиной стороны 3 м, на ширину штыка лопаты и глубиной не менее полуметра. Можно выполнить прямую траншею — длиной не менее 6 м (таким способом оснащаются устройства с недавнего времени). Если делаем по старой методе, в углах равностороннего треугольника кувалдой забиваем заземлители до необходимой глубины. Его нельзя засовывать в готовую скважину, он должен плотно и без зазоров погрузится на глубине не более 3 м.

При оснащении прямолинейной системы, через каждый метр, забиваем по 1-му заземлителю, но не более 5-ти штук. Для лучшего захода в землю, заострите края уголка на заточном станке или обрежьте их болгаркой. Погрузиться в грунт колья должны не полностью, над поверхностью земли должен быть отрезок уголка не менее 200 мм.

Надеваем сварочный костюм и маску, готовим аппарат и подвариваем к вертикальным заземлителям горизонтальные электроды, из полосы шириной не менее 40 мм. От нее, к стене здания, по выкопанной траншее проводим полосу или отрезок силового кабеля достаточного сечения. Теперь, заводим в здание и подводим к входящему электрощиту, а от него выполняем заземление внутридомовой системы.

При проведении заземляющего проводника, с помощью силового кабеля, работы выполняют следующим способом: на вертикальный заземлитель, болтом и гайкой с надежным гровером, закрепляем, запакованный в концевой контакт отрезок кабеля. Для выполнения этой работы понадобится:

  • медная шина сечение которой более 10 мм2;
  • алюминиевая, сечением более 16 мм2;
  • металлический проводник более 75 мм2 сечением.

Все места сварки, проверив качество шва, покрываем грунтовкой или растопленной смолой. В месте сварки металл ослаблен из-за высокой температуры при сваривании и сильнее поддается коррозии. Выполнив все завершающие работы, засыпаем траншею. Сначала слоем песка, а потом заполняем вынутым грунтом.

Все основные работы выполнены, теперь нам остается выполнить измерение сопротивления контура заземления.

Замер сопротивления защитного устройства

Выполнять эту работу лучше в летнее или зимнее время. В эти моменты грунт имеет наибольшую величину электрического сопротивления. В разных условиях применения величина может быть различной. Для жилого здания, это значение не должно превышать 30 Ом. Для измерения сопротивления применяют специальные измерители сопротивления «МС- 08» или «М-416». Выполняется с использованием системы пробных электродов.

Выполнение замеров разбито на несколько этапов.

Между контуром и зданием расположен потенциальный зонд на расстоянии не менее 20–ти метров, а второй выносной электрод располагаем на прямой линии с потенциальным электродом и контуром, на расстоянии не более 40 метров. Подключаем напряжение и выполняем замер уровня сопротивления. Выполняем эту операцию несколько раз, приближая выносной кол на расстояние не менее 5 метров. Выполнив эти замеры, определяем сопротивление контура.

При замерах в обширных подземных коммуникациях, потребуется выполнение дополнительного измерения данной физической величины. Такие замеры проводятся на различных расстояниях между заземлителями и по разным направлениям.

Но во всех измерениях, номинальной величиной сопротивления заземления будет наихудший результат выполненных замеров. В любое время года и в различных погодных условиях, значение сопротивления защиты не должно быть выше наибольшей допустимой величины.

После выполнения замеров и определения сопротивления электрического тока цепи защитного устройства, комиссия составляет акт проведения и контрольного измерения заземления здания. В процессе пользования необходимо проверять надежность обтяжки болта на подключении к заземляющему проводнику, а также при очень высокой температуре, не забывайте смачивать места заглубления электродов.

Проведя все работы по монтажу и контрольному замеру, мы получаем безопасное жилое помещение, защищенное от токов короткого замыкания.

Выделение фундаментов здания на земле

Выделение траншеи фундамента здания - это процесс прокладки линии выемки и осевой линии на земле на основе плана фундамента. Процесс разбивки также называется отслеживанием грунта, который выполняется перед началом процесса земляных работ.

После завершения проектирования фундамента подготавливается план или план фундамента в подходящем масштабе, и план получает соответствующие размеры.Порядок и требования к устройству котлованов под фундамент описаны ниже.

Порядок устройства фундамента здания

Основные этапы устройства траншей под фундамент:

  1. Первым делом разметьте углы здания. После этого проверяют длины сторон диагональными замерами.
  2. Осевые линии (осевые линии) траншей размечены с помощью профилей, визирных планок, веревок и колышков.
  3. Позиционирование траншеи контролируется досками контурного профиля. Профили устанавливаются на расстоянии 2 м от контура, чтобы не прерывать процесс земляных работ.
  4. Смещения измеряются от осевых линий, а линии фронта размещаются в их правильном положении относительно местных требований.
  5. Позиционирование поперечных стен выполняется путем измерения вдоль основных стен и при необходимости выстраивается в квадрате от этих стен. Во время этого процесса необходимо тщательно обозначить общую ширину траншей.

Рис.1 Устройство траншей под фундамент с помощью колышков

Требования к основанию фонда

В разметке должны быть установлены следующие требования:

  1. Размер котлована
  2. Форма котлована
  3. Направление
  4. Ширина стен
  5. Положение стен

При устройстве траншей необходимо учитывать следующие моменты:

  1. Для определения плана фундамента используются гвозди, колышки, профили, веревки и известь.
  2. Для правильного определения положения траншей необходимо правильно установить смотровые планки по углам здания.
  3. Точные центральные или осевые линии могут быть определены и отмечены с помощью теодолита.
  4. К гвоздям или колышкам на профилях привязывают и натягивают веревки, чтобы добиться горизонтального контроля размеров.
  5. На расстоянии 1 метра от краев выработки возводятся вертикальные опорные столбы. Таким образом, вертикальный контроль достигается во время строительства здания.
  6. Стандартная точка отсчета предварительно определяется и размечается геодезистом, на основании которой определяются уровни на площадке. Глубину траншей и других уровней также следует регулировать измерениями с этой точки.
  7. Перед укладкой бетона в траншеи дно необходимо тщательно утрамбовать и утрамбовать.
  8. Ширина обозначается известковым порошком при раскопке вручную. Эти отметки обеспечивают точную резку.
  9. Центральная линия обозначается, когда земляные работы выполняются машиной.

Подробнее : Передвижные опоры земляных работ для строительства траншей и фундаментов

.

Типы фундаментов и их применение в строительстве

Фундаменты делятся на мелкие и глубокие. Обсуждаются типы фундаментов под мелкие и глубокие фундаменты для строительства зданий и их использование.

Желательно знать пригодность каждого типа фундамента перед их выбором в любом строительном проекте.

Типы фундаментов и их использование

В строительстве используются различные типы фундаментов:

  1. Фундамент мелкого заложения
    • Отдельная опора или изолированная опора
    • Комбинированная опора
    • Ленточный фундамент
    • Плот или мат фундамент
  2. Фундамент глубокий
    • Свайный фундамент
    • Валки или кессоны просверленные

Типы фундаментов мелкого заложения

1.Индивидуальные или изолированные стопы

Отдельное или изолированное основание - это наиболее распространенный тип фундамента, используемый при строительстве. Этот фундамент строится для одной колонны и также называется подушечным фундаментом.

Форма индивидуального фундамента - квадрат или прямоугольник, и используется, когда нагрузки от конструкции воспринимаются колоннами. Размер рассчитывается исходя из нагрузки на колонну и допустимой несущей способности грунта.

Прямоугольная изолированная опора выбирается, когда фундамент испытывает моменты из-за эксцентриситета нагрузок или из-за горизонтальных сил.

Например, рассмотрим колонну с вертикальной нагрузкой 200 кН и безопасной несущей способностью 100 кН / м 2 , тогда требуемая площадь опоры будет 200/100 = 2 м 2 . Так, для квадратного фундамента длина и ширина фундамента будут 1,414 м х 1,414 м.

2. Комбинированная опора

Комбинированная опора создается, когда две или более колонны расположены достаточно близко, а их изолированные опоры перекрывают друг друга. Это комбинация изолированных опор, но их конструкция отличается.

Форма основания представляет собой прямоугольник и используется, когда нагрузки от конструкции воспринимаются колоннами.

3. Раздвижные или ленточные и стеновые опоры

К основанию относятся те, у которых основание шире, чем у типичного фундамента несущей стены. Более широкое основание этого типа фундамента распределяет вес строительной конструкции на большую площадь и обеспечивает лучшую устойчивость.

Подножки

Раздвижные опоры и опоры стен используются для отдельных колонн, стен и опор мостов, где несущий слой почвы находится в пределах 3 м (10 футов) от поверхности земли.Несущая способность грунта должна быть достаточной, чтобы выдержать вес конструкции над базовой площадью конструкции.

Их не следует использовать на почвах, где есть вероятность попадания грунтовых вод над несущим слоем почвы, что может привести к размыву или разжижению.

4. Фундаменты на плотах или циновках

Плотные или матовые фундаменты - это типы фундаментов, которые распространяются по всей площади здания, чтобы выдерживать большие структурные нагрузки от колонн и стен.

Плот или мат фундамент

Матовый фундамент используется для фундаментов колонн и стен, где нагрузки от конструкции на колонны и стены очень высоки. Это используется для предотвращения неравномерного оседания отдельных опор, поэтому они спроектированы как единое покрытие (или комбинированное основание) всех несущих элементов конструкции.

Подходит для обширных грунтов, несущая способность которых меньше подходит для раздвижных опор и стеновых опор.Плотный фундамент экономичен, когда половина площади сооружения покрывается индивидуальными опорами и предусмотрены стенные опоры.

Эти фундаменты не следует использовать там, где уровень грунтовых вод находится выше несущей поверхности почвы. Использование фундамента в таких условиях может привести к размыву и разжижению.

Типы глубокого фундамента

5. Фундамент свайный

Свайный фундамент - это тип глубокого фундамента, который используется для передачи тяжелых нагрузок от конструкции на пласты твердой породы, находящиеся намного глубже уровня земли.

Фундамент свайный

Свайные фундаменты используются для передачи тяжелых нагрузок от конструкций через колонны на твердые слои почвы, которые находятся намного ниже уровня земли, где нельзя использовать мелкие фундаменты, такие как раздвижные опоры и маты. Это также используется для предотвращения подъема конструкции из-за боковых нагрузок, таких как землетрясение и сила ветра.

Подробнее о Deep Foundations

Свайные фундаменты обычно используются для почв, где грунтовые условия у поверхности земли не подходят для тяжелых нагрузок.Глубина пластов твердых пород может составлять от 5 до 50 м (от 15 до 150 футов) от поверхности земли.

Свайный фундамент выдерживает нагрузки от конструкции за счет поверхностного трения и концевой опоры. Использование свайных фундаментов также предотвращает неравномерную осадку фундаментов.

Подробнее о свайном фундаменте

6. Просверленные стволы или кессонный фундамент

Просверленные стволы, также называемые кессонами, представляют собой тип глубокого фундамента и действуют аналогично свайным фундаментам, рассмотренным выше, но представляют собой монолитные фундаменты высокой мощности.Он противостоит нагрузкам от конструкции за счет сопротивления вала, сопротивления пальцев ног и / или комбинации обоих этих факторов. Строительство просверленных валов или кессонов выполняется с помощью шнека.

Рис. Просверленные валы или фундамент кессона (Источник: Hayward Baker)

Просверленные валы могут воспринимать нагрузки на колонны, превышающие свайные основания. Он используется там, где глубина твердых пластов ниже уровня земли находится в пределах от 10 до 100 м (от 25 до 300 футов).

Просверленные валы или кессонный фундамент не подходят при наличии глубоких залежей мягких глин и рыхлых, водовмещающих зернистых грунтов.Он также не подходит для почв, где обрушительные образования трудно стабилизировать, грунты, состоящие из валунов, существуют артезианские водоносные горизонты.

Резюме:

Каковы общие классификации фундаментов?

Фундаменты зданий в целом подразделяются на мелкие и глубокие фундаменты.

Какие бывают типы мелкого фундамента?

Типы фундаментов мелкого заложения: индивидуальные или изолированные, комбинированные, ленточные, плотные или матовые.

Какие бывают типы глубокого фундамента?

Типы фундаментов глубокого заложения - свайный фундамент и бурильные стволы или кессоны.

В чем разница между свайным фундаментом и просверленными валами?

Просверленные валы действуют аналогично свайным фундаментам, но представляют собой монолитные фундаменты высокой прочности. Он может переносить нагрузки на колонны, превышающие свайный фундамент. Он используется там, где глубина твердых пластов ниже уровня земли находится в пределах от 10 до 100 м (от 25 до 300 футов).

В чем разница между изолированным и комбинированным фундаментом?

Комбинированная опора создается, когда две или более колонны расположены достаточно близко, а их изолированные опоры перекрывают друг друга. Это комбинация изолированных опор, но их конструкция отличается.

Когда используется плотный или матовый фундамент?

Плотный или матовый фундамент используется для фундаментов колонн и стен, где нагрузки от конструкции на колонны и стены очень высоки. Плоты используются для предотвращения дифференциальной осадки отдельных опор, поэтому они спроектированы как комбинированные опоры всех несущих элементов конструкции.

Подробнее: Исследование грунта и типы оснований на основе свойств грунта

.

Фондов

Фондов

Фонды

Типы фундаментов

Неглубокие фундаменты (иногда называемые «раздвижными опорами») включают подушечки («изолированные опоры»), ленточные опоры и плоты.
Фундаменты глубокие
включают сваи, свайные стены, диафрагменные стены и кессоны.


Типы фундаментов

Фундамент мелкого заложения

Фундаменты мелкого заложения - фундаменты, заложенные рядом с готовой поверхностью земли; как правило, если глубина фундамента (D f ) меньше ширины основания и менее 3 м.Это не строгие правила, а просто рекомендации: в основном, если поверхностная нагрузка или другие условия поверхности влияют на несущую способность фундамента, это «неглубокий». Неглубокие фундаменты (иногда называемые «раздвижными опорами») включают подушки («изолированные опоры»), ленточные опоры и плоты.
Фундаменты мелкого заложения используются, когда поверхностные почвы достаточно прочные и жесткие, чтобы выдерживать приложенные нагрузки; они, как правило, непригодны для слабых или сильно сжимаемых почв, таких как плохо уплотненная насыпь, торф, современные озерные и аллювиальные отложения и т. д.


Фундамент мелкого заложения

Падовый фундамент

Подушечки фундаментов используются для поддержки отдельных точечных нагрузок, например, от несущей колонны. Они могут быть круглыми, квадратными или прямоугольными. Обычно они состоят из блока или плиты одинаковой толщины, но они могут быть ступенчатыми или изогнутыми, если требуется для распределения нагрузки от тяжелой колонны. Фундаменты с подушечками обычно неглубокие, но можно использовать и глубокие фундаменты.


Фундамент мелкого заложения

Ленточный фундамент

Ленточные фундаменты используются для поддержки линии нагрузок либо из-за несущей стены, либо если линия колонн нуждается в опоре, если расположение колонн настолько близко, что отдельные опорные основания были бы неприемлемыми.


Фундамент мелкого заложения

Плотные фундаменты

Плотные фундаменты используются для распределения нагрузки от конструкции на большую площадь, обычно на всю площадь конструкции.Они используются, когда нагрузки на колонны или другие нагрузки на конструкцию близки друг к другу и отдельные фундаментные площадки могут взаимодействовать.

Плотный фундамент обычно представляет собой бетонную плиту, простирающуюся по всей загруженной площади. Он может быть усилен ребрами или балками, встроенными в фундамент.

Фундаменты на плотах имеют то преимущество, что они снижают дифференциальные осадки, поскольку бетонная плита сопротивляется дифференциальным движениям между позициями загрузки. Они часто необходимы на мягких или рыхлых грунтах с низкой несущей способностью, поскольку могут распределять нагрузки на большую площадь.


Типы фундаментов

Фундамент глубокий

Глубокие фундаменты - это фундаменты, заложенные слишком глубоко под готовой поверхностью грунта, чтобы на их несущую способность основания влияли условия поверхности, обычно это происходит на глубине> 3 м ниже уровня готовой земли. К ним относятся сваи, опоры и кессоны или компенсированные фундаменты с использованием глубоких фундаментов, а также глубокие подушечные или ленточные фундаменты. Глубокие фундаменты могут использоваться для передачи нагрузки на более глубокие и более подходящие слои на глубине, если неподходящие почвы присутствуют вблизи поверхности.

Сваи представляют собой относительно длинные тонкие элементы, которые передают нагрузки на фундамент через слои грунта с низкой несущей способностью на более глубокие слои почвы или породы с высокой несущей способностью. Они используются, когда по экономическим соображениям, конструкционным соображениям или условиям почвы желательно передавать нагрузки на слои за пределами практической досягаемости фундаментов мелкого заложения. В дополнение к опорным конструкциям, сваи также используются для анкеровки конструкций против подъемных сил и для оказания помощи конструкциям в сопротивлении боковым силам и силам опрокидывания.

Опоры - это фундаменты, способные выдерживать большие нагрузки на конструкцию, которые сооружаются на месте в глубоких выработках.

Кессоны - это форма глубокого фундамента, который сооружается над уровнем земли, а затем опускается до необходимого уровня путем выемки грунта или выемки грунта изнутри кессона.

Компенсированные фундаменты - это глубокие фундаменты, в которых снятие напряжений, вызванных земляными работами, приблизительно уравновешивается приложенным напряжением, создаваемым фундаментом.Таким образом, прикладываемое чистое напряжение очень мало. Компенсированный фундамент обычно представляет собой глубокий фундамент.


Фундамент глубокий

Сваи

Свайные фундаменты можно классифицировать по
тип сваи
(разные конструкции, которые должны поддерживаться, и разные условия грунта, требуют разных типов сопротивления) и
вид конструкции
(могут использоваться разные материалы, конструкции и процессы).


Сваи

Типы свай

Сваи часто используются, потому что на достаточно малых глубинах нельзя найти адекватную несущую способность, чтобы выдержать нагрузки конструкции. Важно понимать, что сваи получают опору как от концевой опоры , так и от поверхностного трения . Пропорция несущей способности, создаваемая либо торцевым подшипником, либо поверхностным трением, зависит от условий почвы. Сваи могут использоваться для поддержки различных типов структурных нагрузок.


Типы свай

Концевые опорные сваи

Концевые несущие сваи - это сваи, оканчивающиеся твердым, относительно непроницаемым материалом, таким как скала или очень плотный песок и гравий. Они получают большую часть своей несущей способности за счет сопротивления слоя у носка сваи.


Типы свай

Сваи фрикционные

Фрикционные сваи получают большую часть своей несущей способности за счет поверхностного трения или адгезии.Это обычно происходит, когда сваи не достигают непроницаемого пласта, а забиваются на некоторое расстояние в проницаемый грунт. Их несущая способность определяется частично концевой опорой и частично поверхностным трением между заделанной поверхностью почвы и окружающей почвой.


Типы свай

Сваи редукционные

Сваи, уменьшающие оседание, обычно закладываются под центральной частью фундамента плота, чтобы уменьшить разницу осадки до приемлемого уровня.Такие сваи укрепляют почву под плотом и помогают предотвратить перекос плота в центре.


Типы свай

Натяжные сваи

Конструкции, такие как высокие дымоходы, опоры электропередачи и пирсы, могут подвергаться большим опрокидывающим моментам, поэтому часто используются сваи для противодействия возникающим подъемным силам на фундаменте. В таких случаях возникающие силы передаются на грунт по длине заделки сваи.Сила сопротивления может быть увеличена в случае буронабивных свай за счет недостаточного расширения. При проектировании натяжных свай необходимо учитывать эффект радиального сжатия сваи, так как это может привести к снижению сопротивления вала примерно на 10-20%.


Типы свай

Сваи с боковой нагрузкой

Почти все свайные фундаменты подвергаются, по крайней мере, некоторой степени горизонтальной нагрузки. Величина нагрузок по отношению к приложенной вертикальной осевой нагрузке, как правило, будет небольшой, и никаких дополнительных расчетов конструкции обычно не требуется.Однако в случае причалов и пристаней, на которые воздействуют ударные силы швартованных судов, свайных оснований для опор мостов, эстакад для мостовых кранов, высоких дымоходов и подпорных стен, горизонтальный компонент относительно велик и может оказаться критическим при проектировании. Традиционно в таких случаях сваи устанавливаются под углом к ​​вертикали, обеспечивая достаточное горизонтальное сопротивление за счет компонента осевой нагрузки сваи, действующего горизонтально. Однако способность вертикальной сваи противостоять нагрузкам, приложенным нормально к оси, хотя и значительно меньше, чем осевая способность этой сваи, может быть достаточной, чтобы избежать необходимости в таких «сгребающих» или «битых» сваях, установка которых является более дорогой. .Поэтому при проектировании свай для восприятия боковых сил важно учитывать это.


Типы свай

Сваи в насыпи

Сваи, проходящие через слои средне- или плохо уплотненного заполнителя, будут подвержены отрицательному поверхностному трению , которое вызывает сопротивление вниз вдоль вала сваи и, следовательно, дополнительную нагрузку на сваю. Это происходит, когда заливка затвердевает под действием собственного веса.


Сваи

Виды свайных конструкций

Вытесняемые сваи вызывают смещение почвы как в радиальном, так и в вертикальном направлении, когда вал сваи забивается или вдавливается в землю. При использовании несмещаемых свай (или сменных свай) грунт удаляется, и образовавшаяся яма, заполненная бетоном или сборной бетонной сваей, опускается в яму и заливается раствором.


Виды свайного строительства

Сваи вытесняющие

Пески и зернистые почвы имеют тенденцию уплотняться в процессе вытеснения, тогда как глины имеют тенденцию к вспучиванию.Сами вытесняющие сваи можно разделить на разные типы, в зависимости от того, как они построены и как они вставляются.


Сваи смещения

Полностью готовые вытесняющие сваи

Они могут быть из сборного железобетона;
армированный по всей длине (предварительно напряженный)
сочлененный (усиленный)
полый (трубчатый) профиль
или они могут быть из стали различного сечения.


Сваи смещения

Забивные и забивные сваи

Этот тип сваи может быть двух форм. Первый включает в себя вбивание временной стальной трубы с закрытым концом в землю, чтобы сформировать пустоту в почве, которая затем заполняется бетоном по мере извлечения трубы. Второй тип такой же, за исключением того, что стальная труба остается на месте, образуя прочный кожух.


Сваи смещения

Винтовые забивочные сваи

Конструкция этого типа выполняется с использованием специального шнека.Однако почва уплотняется, а не удаляется, поскольку шнек ввинчивается в землю. Шнек установлен на полой штанге, которую можно заполнить бетоном, поэтому, когда необходимая глубина будет достигнута, бетон может быть закачан вниз по штоку, и шнек будет медленно отвинчиваться, оставляя сваю на месте.


Сваи смещения

Способы установки

Сваи смещения забиваются или вдавливаются в грунт.Можно использовать несколько различных методов.


Способы установки

Падение веса

Падающий груз или ударный молот - это наиболее часто используемый метод установки вытесняющих свай. Вес примерно в два раза меньше веса сваи поднимается на подходящее расстояние в направляющей и отпускается, чтобы ударить по головке сваи. При забивке полой трубы сваи вес обычно воздействует на пробку в нижней части сваи, таким образом уменьшая любые избыточные напряжения по длине трубы во время вставки.

Вариантами простого отбойного молотка являются перфораторы одностороннего и двустороннего действия . Они приводятся в движение паром, сжатым воздухом или гидравлически. В молоте одностороннего действия вес поднимается сжатым воздухом (или другими средствами), который затем выпускается, и весу позволяют упасть. Это может происходить до 60 раз в минуту. Молоток двустороннего действия такой же, за исключением того, что сжатый воздух также используется при движении молота вниз. Однако этот тип молота не всегда подходит для забивки бетонных свай.Хотя бетон может выдерживать сжимающие напряжения, создаваемые молотком, ударная волна, создаваемая каждым ударом молота, может создавать высокие растягивающие напряжения в бетоне при возврате. Это может привести к разрушению бетона. Вот почему бетонные сваи часто подвергаются предварительному напряжению.


Способы установки

Дизельный молот

Быстрые контролируемые взрывы можно производить от дизельного молота. Взрывы поднимают таран, который используется для забивания сваи в землю.Хотя вес поршня меньше, чем вес, используемый в отбойном молотке, повышенная частота ударов может компенсировать эту неэффективность. Этот тип молота наиболее подходит для забивки свай через несвязные зернистые грунты, где большая часть сопротивления приходится на торцевую опору.


Способы установки

Вибрационные методы забивки свай

Вибрационные методы могут оказаться очень эффективными при забивании свай через несвязные зернистые почвы.Вибрация сваи возбуждает зерна грунта, прилегающие к свае, делая грунт почти свободным, что значительно снижает трение вдоль вала сваи. Вибрация может создаваться электрически (или гидравлически) вращающимися в противоположном направлении эксцентриками, прикрепленными к головке сваи, обычно действующими с частотой около 20-40 Гц. Если эту частоту увеличить примерно до 100 Гц, это может создать продольный резонанс в свае, и скорость проникновения может достигать 20 м / мин в умеренно плотных зернистых грунтах.Однако большая энергия, возникающая в результате вибрации, может повредить оборудование, распространение шума и вибрации также может привести к заселению близлежащих зданий.


Способы установки

Методы установки домкратом

Домкратные сваи чаще всего используются для опор существующих конструкций. Выкапывая грунт под конструкцией, можно вставить короткие куски сваи и втолкнуть их в землю, используя в качестве реакции нижнюю часть существующей конструкции.


Виды свайного строительства

Несвижные сваи

В случае сваи без смещения почва удаляется, а образовавшаяся яма заполняется бетоном или, иногда, сборная бетонная свая опускается в яму и заливается раствором. Глины особенно подходят для этого типа образования свай, поскольку в глинах требуется только стенка скважины. опора близко к поверхности земли. При бурении более неустойчивого грунта, такого как гравий, может потребоваться какая-либо форма обсадной трубы или опоры, например, бентонитовая суспензия.В качестве альтернативы, раствор или бетон можно вводить из шнека, вращающего гранулированный грунт. Таким образом, существует четыре типа несмещаемых свай.

Этот метод строительства создает неравномерную поверхность раздела между стволом сваи и окружающей почвой, что обеспечивает хорошее сопротивление поверхностному трению при последующей нагрузке.


Несвижные сваи

Буронабивные сваи малого диаметра

Они обычно имеют диаметр 600 мм или меньше и обычно изготавливаются с использованием штатива.Оборудование состоит из треноги, лебедки и троса для управления различными инструментами. Основные инструменты показаны на этой диаграмме.

В зернистых почвах основной инструмент состоит из тяжелой цилиндрической оболочки с режущей кромкой и откидной заслонкой внизу. Для проведения раскопок этого типа необходима вода. При перемещении корпуса вверх и вниз на дне ствола скважины происходит разжижение грунта (так как под корпусом создается низкое давление, поскольку разжиженный грунт быстро перемещается вверх), и он течет в корпус и может быть поднят на лебедку. поверхность и опрокинуты.При просверливании гранулированного грунта существует опасность чрезмерного разрыхления материала по бокам отверстия. Чтобы предотвратить это, необходимо продвинуть временную обсадную колонну, вбивая ее в землю.

В связных грунтах скважину продвигают путем многократного опускания инструмента крестообразного сечения с цилиндрической режущей кромкой в ​​грунт и последующего подъема его на поверхность вместе с грунтовым грузом. Оказавшись на поверхности, глина, которая прилипает к крестообразным лезвиям, разделяется на пары.


Несвижные сваи

Буронабивные сваи большого диаметра

Большие скважины диаметром от 750 мм до 3 м (с 7-метровыми нижними расширениями) возможны при использовании роторного бурового оборудования. Шнековая установка обычно монтируется на кран или грузовик.

Спиральный или ковшовый шнек, показанный на этой схеме, прикреплен к валу, известному как штанга Келли (телескопический элемент квадратного сечения, приводимый в движение горизонтальным вращателем).При использовании этой техники возможна глубина до 70 метров. Использование бентонитовой суспензии в сочетании со шнековым ковшом может устранить некоторые трудности, связанные с бурением мягких илов и глин, а также рыхлых зернистых грунтов без постоянной поддержки обсадными трубами. Одно из преимуществ этого метода - потенциал до

.

Прогноз деформации здания на основе осаждений земной поверхности при выемке грунта на станции метро

Деформации здания не только тесно связаны с расстоянием от здания до выемки станции метро, ​​но также связаны с относительным расположением здания и выемки на станции метро . Деформации здания можно предсказать, используя профили осадки поверхности земли. Основываясь на типичных геологических параметрах выемки на станции метро Нанкин, осадки на земной поверхности были численно моделированы вспомогательными плоскостями, перпендикулярными и параллельными выемке, и наклонными вспомогательными плоскостями на углу выемки.Результаты показывают, что профили осадки поверхности земли во вспомогательных плоскостях тесно связаны с взаимным расположением вспомогательных плоскостей и выемки на станции метро. Было предложено разделение населенных пунктов земной поверхности по трем типам профилей осадки земной поверхности; Кроме того, проанализированы закономерности изгибной деформации и крутильной деформации окружающих зданий и разработана методика расчета осадки застройки. Наконец, данные об оседании 21 здания в различных зонах, полученные при полевом мониторинге, были сопоставлены с расчетными данными об оседании, и было проанализировано применение метода оценки осадки к различным типам фундаментов.Результаты этого исследования могут служить ориентиром при строительстве глубоких котлованов метро и защите окружающих зданий.

1. Введение

Глубокие раскопки на станциях метро обычно проводят в шумных районах города. Конструкции выемки грунта должны соответствовать не только требованиям прочности и устойчивости опорной конструкции, но также и требование к деформационно-контрольному окружающей среде [1]. Смещения грунтовых масс вокруг выработок станции имеют сложные трехмерные (3D) характеристики.Однако предыдущие исследования в основном были сосредоточены на прогибе стен и ограниченно учитывали осадки на поверхности земли [2–8]. Осадки земной поверхности можно изучать через вспомогательные плоскости, перпендикулярные и параллельные выемке, а также через наклонные вспомогательные плоскости в углу выемки (рис. 1).


Осадки земной поверхности в перпендикулярной вспомогательной плоскости изучались многими учеными, но в основном в случае двухмерных (2D) плоско-деформированных состояний.Например, исследователи предложили треугольные и желобообразные профили осадки земной поверхности в перпендикулярных вспомогательных плоскостях [9, 10]. Однако в нескольких исследованиях изучались осадки на поверхности земли в случае трехмерных состояний, особенно осадки на поверхности земли в наклонных вспомогательных плоскостях и в параллельных вспомогательных плоскостях.

Деформация здания вокруг выемки на станции метро связана с геотехническим и структурным взаимодействием, что делает ее междисциплинарной инженерно-геологической проблемой.Сон и Кординг [11] изучали явление разрушения здания из-за раскопок в масштабированных моделях 1:10 и обнаружили, что трещины в зданиях можно классифицировать как «сдвиг + растяжение», «выпуклость + растяжение» и «вогнутость + растяжение». ” Различные формы деформации тесно связаны с профилем осадки поверхности земли; то есть взаимное расположение здания и выемки определяет форму деформации здания. Эти выводы согласуются с результатами численного моделирования, представленными Zheng и Li [12–14].Кроме того, Брайсон и Сапата-Медина [15] и Сабзи и Фахер [16] изучали деформации зданий вокруг раскопок с помощью полевого мониторинга, теоретического анализа и численного моделирования.

Ли и др. [17] изучали профили осаждений на поверхности земли, анализируя данные полевого мониторинга раскопок 30 станций при строительстве линий 3, 10 и S8 метро в Нанкине. В настоящем исследовании модифицированная модель каменноугольной глины была адаптирована с типичными геологическими параметрами в районе Нанкина, а трехмерные характеристики осаждений на поверхности земли, возникшие в результате раскопок станции, были численно проанализированы с использованием FLAC3D.Численное моделирование в настоящей статье является дополнительным исследованием к отчету Ли и др. [17]. Ли и др. [17] сообщили, что при строительстве линий 3, 10 и S8 Нанкинского метро были получены три типа профилей осадки поверхности земли, подходящие для различных зон (зоны A, B и C) вокруг выемки. В настоящем исследовании были проведены дальнейшие исследования деформаций зданий. Было предложено разделение населенных пунктов земной поверхности по трем типам профилей осадки земной поверхности; затем были разработаны метод прогнозирования типа деформации здания и метод оценки осадки зданий.Наконец, были сопоставлены данные полевого мониторинга и оценочные значения осадки населенных пунктов зданий, а также обсуждено применение метода оценки осадки к различным типам фундаментов.

Следует отметить, что три профиля оседания поверхности, представленные Li et al. [17] были основаны на поселении с нуля. Таким образом, для оценки деформации здания использовалась осадка грунта с нуля, и не учитывалась взаимосвязь земляных работ и строительства.

2. Подготовка к численному анализу
2.1. Моделирование массы почвы

Согласно Xu et al. [18] и Ding et al. [19], диапазон влияния осадка при выемке грунта обычно в 4 раза превышает глубину выемки. Для мягких грунтов с плохими инженерными свойствами диапазон влияния осадки не будет превышать 5-кратную глубину выемки. Чжэн и Цзяо [1] показали, что диапазон воздействия подъема дна при глубоких выработках обычно в 2 раза превышает глубину выемки.Кроме того, при численном анализе очень важен выбор конститутивной модели почвы. Согласно анализу различных конститутивных моделей Ou et al. [20], Поттс [21], Антониу и др. [22] и Anthony et al. [23], модифицированная модель каменноугольной глины предпочтительнее для анализа глубоких выработок. Для повышения эффективности вычислений симметрию можно учитывать в прямоугольной выемке, и для анализа можно использовать только половинную или четвертную модель. Граничные условия обычно устанавливались так, что граница поверхности земли была свободной границей, смещения боковых границ ограничивались в горизонтальном направлении, а смещение нижней границы ограничивалось в вертикальном направлении.Первоначальное равновесие напряжений было достигнуто путем приложения гравитационного поля.

В целом ширина и глубина глубоких раскопок станций Нанкинского метро составляла примерно 20 м, а длина - примерно 200 м [17]. Для повышения эффективности расчетов средняя часть глубокого котлована находилась в двухмерном плоско-деформированном состоянии; следовательно, соответствующее уменьшение размера в продольном направлении модели может удовлетворить требованиям анализа. Принимая размер выемки на станции 120 м × 20 м × 20 м, была создана половинная модель с размерами 200 м × 150 м × 90 м, как показано на рисунке 2.Для моделирования грунтового массива использовались 8-узловые 6-гранные элементы.


Нанкин расположен в низовьях реки Чанг Цзян, относящейся к складчатому поясу впадины Янцзы в геотектонической геологии. Морские пласты, континентальные пласты и морско-континентальные пласты разных эпох попеременно откладывались здесь, начиная с сининского периода. Поверхность грунта состоит в основном из четвертичных аллювиальных глин, перекрывающих меловые песчаники. В таблице 1 представлены параметры глинистого грунта, использованные в численном анализе, что типично для Нанкина.


Параметры Плотность грунта Коэффициент пористости Коэффициент Пуассона Коэффициент бокового давления Наклон линии начальной консолидации Наклон линии расширения Наклон линии критического состояния Начальное объемное соотношение OCR
γ (кН / м 3 ) λ
.

Смотрите также