Провод заземления пмл
61573 | ПМЛ 10-500 НК (КВТ) | Провод заземления | иное | 10 | 10 | 500 |
60211 | ПМЛ 16-500 НК (КВТ) | Провод заземления | иное | 10 | 16 | 500 |
81220 | ПМЛ 16-600 НК (КВТ) | Провод заземления | иное | 10 | 16 | 600 |
81221 | ПМЛ 16-800 НК (КВТ) | Провод заземления | иное | 10 | 16 | 800 |
60212 | ПМЛ 25-500 НК (КВТ) | Провод заземления | иное | 10 | 25 | 500 |
81222 | ПМЛ 25-600 НК (КВТ) | Провод заземления | иное | 10 | 25 | 600 |
81224 | ПМЛ 25-800 НК (КВТ) | Провод заземления | иное | 10 | 25 | 800 |
64091 | ПМЛ 10-1000 (КВТ) | Провод заземления | иное | 10 | 10 | 1000 |
58024 | ПМЛ 16-1000 (КВТ) | Провод заземления | иное | 10 | 16 | 1000 |
58025 | ПМЛ 25-1000 (КВТ) | Провод заземления | иное | 10 | 25 | 1000 |
61789 | ПМЛ 25-250 (КВТ) | Провод заземления | иное | 10 | 25 | 250 |
61790 | ПМЛ-25-300 (КВТ) | Провод заземления | иное | 10 | 25 | 300 |
61791 | ПМЛ-25-400 (КВТ) | Провод заземления | иное | 10 | 25 | 400 |
SWG в мм | Преобразование стандартных размеров в миллиметры
Стандартный калибр проволоки (SWG) в мм и мм 2 Калькулятор преобразования, таблица и способ преобразования.
Калькулятор преобразованияSWG в миллиметры
Расчет площади поперечного сечения провода
Площадь поперечного сечения провода калибра n А n в квадратных миллиметрах (мм 2 ) равно пи, деленному на 4 диаметра квадратной проволоки d в миллиметрах (мм):
A n (мм 2 ) = (π / 4) × d n 2
Таблица преобразованияSWG в миллиметры
SWG # | Диаметр (мм) | Площадь (мм 2 ) |
---|---|---|
7/0 | 12.700 | 126.6769 |
6/0 | 11,786 | 109,0921 |
5/0 | 10.973 | 94,5638 |
4/0 | 10,160 | 81.0732 |
3/0 | 9,449 | 70.1202 |
2/0 | 8,839 | 61.3643 |
0 | 8,230 | 53,1921 |
1 | 7,620 | 45.6037 |
2 | 7.010 | 38,5989 |
3 | 6,401 | 32,1780 |
4 | 5,893 | 27,2730 |
5 | 5.385 | 22,7735 |
6 | 4,877 | 18.6793 |
7 | 4,470 | 15,6958 |
8 | 4,064 | 12,9717 |
9 | 3.658 | 10,5071 |
10 | 3,251 | 8,3019 |
11 | 2.946 | 6,8183 |
12 | 2,642 | 5,4805 |
13 | 2,337 | 4,2888 |
14 | 2,032 | 3,2429 |
15 | 1,829 | 2,6268 |
16 | 1,626 | 2,0755 |
17 | 1.422 | 1,5890 |
18 | 1,219 | 1,1675 |
19 | 1.016 | 0,8107 |
20 | 0,914 | 0,6567 |
21 | 0,813 | 0,5189 |
22 | 0,711 | 0,3973 |
23 | 0.610 | 0,2919 |
24 | 0,559 | 0,2452 |
25 | 0,5080 | 0,2027 |
26 | 0,4572 | 0,1642 |
27 | 0,4166 | 0,1363 |
28 | 0,3759 | 0,1110 |
29 | 0.3454 | 0,0937 |
30 | 0,3150 | 0,0779 |
31 | 0,2946 | 0,0682 |
32 | 0,2743 | 0,0591 |
33 | 0,2540 | 0,0507 |
34 | 0,2337 | 0,0429 |
35 | 0.2134 | 0,0358 |
36 | 0,1930 | 0,0293 |
37 | 0,1727 | 0,0234 |
38 | 0,1524 | 0,0182 |
39 | 0,1321 | 0,0137 |
40 | 0,1219 | 0,0117 |
41 | 0.1118 | 0,0098 |
42 | 0,1016 | 0,0081 |
43 | 0,0914 | 0,0066 |
44 | 0,0813 | 0,0052 |
45 | 0,0711 | 0,0040 |
46 | 0,0610 | 0,0029 |
47 | 0.0508 | 0,0020 |
48 | 0,0406 | 0,0013 |
49 | 0,0305 | 0,0007 |
50 | 0,0254 | 0,0005 |
См. Также
.Что такое верхний заземляющий провод или заземляющий провод? Определение и угол экранирования
Определение: Воздушный провод заземления или заземляющий провод представляет собой форму молниезащиты с использованием проводника или проводников. Он прикреплен от опоры к опоре над линией электропередачи и регулярно заземляется. Заземляющий провод перехватывает прямые удары молнии, которые могут ударить по фазным проводам. Провод заземления не влияет на коммутационные скачки.
Когда молния попадает в заземляющий провод на середине пролета, образуются волны, которые распространяются в противоположных направлениях вдоль линии.Волны достигают прилегающей башни, которая безопасно передает их на землю. Заземляющий провод эффективен только тогда, когда сопротивление между основанием башни и землей достаточно низкое.
Если сопротивление между ними не низкое, и заземляющий провод или опору будет поражать молния, тогда молния будет повышена до очень высокого потенциала, что вызовет вспышку от мачты к одному или нескольким фазным проводам. Такое перекрытие известно как обратное перекрытие.
Обратная вспышка возникает только тогда, когда произведение проводника опоры и импеданса опоры превышает уровни изоляции линии.Его можно свести к минимуму за счет уменьшения сопротивления опоры опоры с помощью приводных штанг и противовесов, если удельное сопротивление грунта велико.
Противовес - проводник, закопанный в землю. Проволока обычно изготавливается из оцинкованной стали. Противовес для подвесного терминала состоит из специальной клеммы заземления, которая снижает импульсное сопротивление заземляющего соединения и увеличивает связь между заземляющим проводом и проводником.
В линии передачи используются противовесы двух типов, т.е.е., параллельный противовес и радиальный противовес.
Параллельный противовес - Параллельный противовес состоит из одного или нескольких противовесов, расположенных под линией передачи по всей ее длине. Линия противовеса подключена через перезаземленный провод на всех опорах и опорах.
Радиальный противовес - Противовес радиального типа состоит из множества тросов, идущих радиально от опор башни. Количество и длина тросов определяются расположением мачты и условиями почвы.
Экранирование или защитный уголок
Экран или защитный угол - это угол между вертикальным заземляющим проводом и фазным проводом, который должен быть защищен. Обычно угол между вертикалью, проходящей через заземляющий провод, и линией, соединяющей заземляющий провод через самый внешний фазовый провод, принимается как угол экранирования.
Для эффективного экранирования защитный угол должен быть как можно меньше. Угол между 20 ° и 30 ° вполне безопасен, и его не следует держать выше 40 °.
В современных высоковольтных системах используются два провода с более широким расстоянием между ними. Защита, обеспечиваемая двухпроводным заземляющим проводом, намного лучше, чем однопроводным. Кроме того, импульсное сопротивление для двух заземляющих проводов невелико, а эффект связи провода увеличивается.
.Земля, шасси и сигнальное заземление
В аналоговой конструкции связь сигнала с землей является фундаментальной проблемой (и может создавать проблемы и в цифровых проектах). Однако понятие «земля» может сбивать с толку, поскольку оно относится к трем различным ситуациям: заземление шасси, сигнальное заземление или заземление. Все три указывают на подключение к точке (теоретически) нулевого напряжения , но в другом контексте: заземление шасси для устройства, сигнальное заземление для сигналов очень низкого напряжения внутри устройства и заземление для энергосистемы.
Рис. 1. Есть три разных электрических символа для заземления, обозначающих контекст в схеме. Источник: Википедия.
Но земля как нулевое напряжение теоретически; только провод с нулевым сопротивлением будет иметь нулевое напряжение. В действительности, заземляющий слой или шина обычно будут иметь переменные напряжения на незначительных уровнях. В необычных случаях возникают проблемы из-за того, что «нулевое» напряжение земли совсем не близко к нулю. Это наиболее вероятно, если схема или устройство работают с высоким потреблением тока, или в случаях, когда заземляющий провод, провод или шина имеют высокий импеданс (т.е.е., «заземляющий» материал или «заземляющий провод / шина» - это , а не , хороший проводник электричества.) Закон Ома действует независимо от того, что: V = IR. Ток (I) через любой материал с сопротивлением (R) будет иметь напряжение (В), отличное от нуля. Провода и дорожки имеют сопротивление в реальном мире и влияют, например, на обратный путь («земля») для обратных направляющих. Здравый смысл говорит, что такие соединительные провода, что сопротивление проводки аддитивно (последовательно) в обратном пути для одного устройства, но не для других, создают другое напряжение на «земле» для этого одного устройства (V = IR).
Заземление шасси - это точка сбора земли, которая подключается к металлическому корпусу электрического устройства. Заземление корпуса может использоваться для экранирования и заземления во избежание поражения электрическим током. Заземление сети и (теоретически) шины питания 0 В связаны вместе и подключены к шасси в одной точке. Например, в многослойных печатных платах один или несколько проводящих слоев могут использоваться в качестве заземления шасси. Заземление шасси обычно выполняется только в одной точке.Это предотвращает обратный ток через доступные, но нежелательные средства и предотвращает ток, циркулирующий через шасси. Ток, циркулирующий через шасси, может вызвать «контур заземления». Но если шасси заземлено только в одной точке, ток не может течь через шасси, и связь между магнитным потоком и электричеством не может быть реализована. Контуры заземления, которые вызывают наведенную ЭДС (шум), особенно проблематичны для чувствительных к шуму приложений, таких как приборы и аудио.
Контуры заземления часто возникают при соединении нескольких электронных устройств вместе, потому что никакие два заземления никогда не имеют одинакового потенциала, что вызывает поток. Даже очень низкая (по напряжению) разность потенциалов заставляет ток течь от земли одного блока к другому блоку и обратно к первому блоку через дополнительное заземление, обеспечиваемое сетью распределения электроэнергии. Хотя импеданс контура заземления составляет лишь очень небольшую долю Ом, этого достаточно, чтобы вызвать такие проблемы, как шум и помехи.Распространенным решением для контуров заземления является распределение по схеме «звезда», где выбирается произвольная точка «заземление с самым низким потенциалом напряжения». В звездообразном распределении все взаимосвязанные компоненты соединены по схеме излучения наружу от «земли». Если звездное распределение выполнено аккуратно, сигнальная проводка между оборудованием, заземленным на звезду, будет иметь нулевой потенциал, что позволит избежать контуров заземления.

Рис. 2: В идеальном мире все точки, помеченные как «земля», имеют ровно ноль вольт. По пути будет течь электричество.Электричество и магнетизм взаимосвязаны, что хорошо, так как двигатели зависят от этого отношения для работы, но не хорошо, когда поток тока нежелателен. Источник: Питер Уилсон, компаньон проектировщика схем.
Сигнальная земля - это контрольная точка, от которой измеряется сигнал. Там может быть более одного опорного заземления в данной схеме. Чистое сигнальное заземление или заземление без наведенного шума важно для электрического оборудования, которое должно точно определять очень малые уровни или перепады напряжения, например, в медицинском оборудовании.Когда существует несколько путей прохождения электричества к земле, дублированные пути заземления улавливают токи помех и преобразуют токи в колебания напряжения. Опорный уровень земли в системе больше не является стабильным потенциалом, и шум становится частью сигнала.
Печатные платы (PCB) могут унаследовать проблемы с заземлением от программ автоматической компоновки. Сигнальная земля или опорное напряжение 0В сигнала, должна быть на печатной плате и не заземлена от печатной платы, где он может забрать внешние шумы.
Напряжения сигналов намного меньше, чем напряжения, поступающие в систему, например, на силовых модулях точки входа (POE). Здравый смысл гласит, что сигнальная земля изолирована от шасси или заземления питания. Сигнальное заземление также может быть разделено между цифровыми и аналоговыми частями системы. Сигналы могут страдать от помех, создаваемых землей, когда заземление входного сигнала находится вне печатной платы, на которой находится сигнал. Однако наземные помехи можно игнорировать, если сигнал намного больше, чем вносимый шум.Заземление для обеспечения целостности сигнала на печатных платах - это подробный вопрос, который, однако, не может быть рассмотрен в этой статье. [I]
Земляное заземление восходит к практике использования заземляющего стержня, вбитого в поверхность земли по соображениям безопасности. Обычный контекст для заземления - в бытовых электрических системах, где ток покидает панель главной цепи через горячий провод и течет к розеткам и источникам света по мере того, как электричество потребляется (или иным образом отклоняется по жизнеспособному пути), а обратный путь предоставляется обратно к панели через нейтральный провод.Заземление добавляет третий провод (провод заземления), чтобы обеспечить путь для тока, который не может замкнуть цепь. Например, оголенный проводящий провод может создать ситуацию, когда ток мог бы протекать через тело человека по пути к земле, если бы не заземляющий провод, который вместо этого безопасно рассеивает ток на землю и, как мы надеемся, срабатывает предохранитель из-за чрезмерного потребляемый ток на землю.
Особенно важно заземление при высоком напряжении.Если электрическое оборудование имеет неисправный компонент, который приводит к тому, что напряжение под напряжением вступает в контакт с проводящим шасси, например, оборудование может продолжать работать из-за внутренней изоляции систем, но первый человек, который коснется шасси, становится путем землю и понесет серьезные травмы или даже смерть. Даже если предохранитель находится на пути к источнику напряжения, находящемуся под напряжением, все равно требуется микро или миллисекунды, чтобы предохранитель перегорел и разомкнул цепь, предотвращая протекание. Таким образом, прерыватели заземления и защиты от короткого замыкания чаще всего присутствуют там, где присутствует высокое напряжение.
Понятно, что концепция заземления является фундаментальной для электрических концепций и на практике. Последствия различаются при работе с очень высокими напряжениями по сравнению с небольшими сигналами, контуры заземления могут сработать в любой ситуации, когда заземление имеет установленный путь, и на эту тему были написаны книги. Но только после того, как кто-то проведет поиск и устранение неисправностей в течение нескольких часов, только чтобы найти ослабленный винт (влияющий на заземление шасси) или смещенную дорожку (сигнальное заземление), можно действительно понять, как электрическое заземление считается само собой разумеющимся.
[i] Уилсон, Питер. Спутник проектировщика схем . 3-е изд. Оксфорд: Newnes, 2012. Печать.
.