Проверка переходного сопротивления заземления


Электролаборатория - методика перходное сопротивление

  • Нормативные ссылки.
В данной методике использованы ссылки на нормативные документы:
  • Правила эксплуатации электроустановок потребителей М.: Энергоатомиздат, 1992.
  • Правила устройства электроустановок (ПУЭ). Изд. 6 с изменениями и дополнениями.
  • Правила устройства электроустановок (ПУЭ). Изд.7. Раздел 6. Раздел 7, гл. 7.1,

 гл. 7.2.

  • Правила по охране труда при эксплуатации электроустановок. (Приказ министерства труда и социальной защиты РФ от 24.07.2013 г. №328н).
  • ГОСТ Р 50571.16-99 «Приемо-сдаточные испытания».
  • ГОСТ Р 8.563-2009 «Методики выполнения измерений».
  • ГОСТ Р 50571.1-93 «Электроустановки зданий. Основные положения».
  • ГОСТ Р 50571.3-94 «Электроустановки зданий. Часть 4. Требования по обеспечению безопасности. Защита от поражения электрическим током».
  • ГОСТ Р 50571.10-96 «Электроустановки зданий. Выбор и монтаж электрооборудования. Заземляющие устройства и защитные проводники.»
  • ГОСТ Р 50571.16-99 «Электроустановки зданий. Часть 6. Испытания. Приемо-сдаточные испытания».
  • Инструкция по эксплуатации «Измеритель сопротивления заземления ИС-10»
  • Термины и определения.

 

В настоящем стандарте используются термины и определения, принятыми согласно ПУЭ изд. 6 и комплекса стандартов ГОСТ Р 50571.

3.1 Электрооборудование — любое оборудование, предназначенное для производства, преобразования, передачи, распределения или потребления электрической энергии, например: машины, трансформаторы, аппараты, измерительные приборы, устройства защиты, кабельная продукция, электроприемники.

3.2 Электроустановка — любое сочетание взаимосвязанного электрооборудования в пределах данного пространства или помещения.

3.3 Электрическая цепь — совокупность электрооборудования, соединенного проводами и кабелями, через которое может протекать электрический ток.

3.4 Защитный проводник (РЕ) — проводник, применяемый для каких-либо защитных мер от поражения электрическим током в случае повреждения и для соединения открытых проводящих частей:

— с другими открытыми проводящими частями;

— со сторонними проводящими частями;

— с заземлителями, заземляющим проводником или заземленной токоведущей частью.

3.5 Нулевой защитный проводник (РЕ) — проводник в электроустановках напряжением до 1 кВ, соединяющий зануляемые части с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с глухо-заземленной средней точкой источника в сетях постоянного тока.

3.6 Нулевой рабочий проводник (N) — проводник, используемый для питания приемников электрической энергии и соединения одного из их выводов с заземленной нейтралью электроустановки.

3.7 Совмещенный нулевой рабочий и защитный проводник (PEN — проводник ) — проводник, сочетающий функции защитного и нулевого рабочего проводников.

3.8 Заземляющий проводник — защитный проводник, соединяющий заземляемые части электроустановки с заземлителем.

3.9 Заземлитель — проводник (электрод) или совокупность электрически соединенных между собой проводников, находящихся в контакте с землей или ее эквивалентом, например, с неизолированным от земли водоемом.

3.10 Защита от непосредственного прикосновения к токоведущим частям; защита от прямого контакта — технические мероприятия, электрозащитные средства и их совокупности, предотвращающие прикосновение к токоведущим частям, находящимся под напряжением, или приближение к ним на расстояние менее безопасного.

 

  • Характеристики измеряемой величины, нормативные значения измеряемой величины.

Объектами измерений являются:

—    зануляющие (заземляющие) защитные проводники;

  • проводники уравнивания потенциалов.

Действующий ГОСТ 50571.10-94  регламентирует требования к электробезопасности, согласно которым:

4.1 Заземление или зануление следует выполнять:

      — при напряжение 380 В  и выше переменного тока и 440В и выше постоянного тока во всех электроустановках,

      — при номинальных напряжениях выше 42В, но ниже 380В переменного тока и  выше 110В, но ниже 440 В постоянного тока – только в помещениях с повышенной опасностью, особо опасных и наружных установках.

4.2 Заземление и зануление электроустановок не требуется при номинальных напряжениях до 42В переменного тока и до 110В постоянного тока во всех случаях (исключение  составляет металлические оболочки и броня контрольных и силовых кабелей и проводов напряжением до 42В переменного тока и 110В постоянного тока, проложенных на общих металлических конструкциях, в том числе в общих трубах, коробах, лотках и т.п. Вместе с кабелями и проводами, металлические оболочки и броня которых подлежат заземлению или занулению).

К частям, подлежащим занулению или заземлению относятся:

— корпуса электрических машин, трансформаторов, аппаратов, светильников и.т.п;

— приводы электрических аппаратов;

— вторичные обмотки измерительных трансформаторов;

— каркасы распределительных щитов, щитов управления, щитков и шкафов, а также съёмные или открывающие части, если на последних установлено электрооборудование напряжением выше 42В переменного тока или более 110В постоянного тока;

— металлические конструкции распределительных  устройств, металлические кабельные

конструкции, металлические кабельные соединительные муфты, металлические оболочки и броня контрольных и силовых кабелей, металлические оболочки проводов, металлические рукава и трубы электропроводки, кожухи и опорные конструкции шинопроводов, лотки, короба, струны, тросы и стальные полосы, на которых укреплены кабели и провода  (кроме струн, тросов и полос, по которым проложены кабели с заземленной  металлической оболочкой или броней.), а также другие металлические конструкции, на которых устанавливается электрооборудование;

— металлические корпуса передвижных электроприёмников:

         а) Заземляющие  и нулевые защитные проводники, а также проводники металлической связи корпусов оборудования передвижных электроустановок должны быть медными, гибкими, как правило находиться в общей оболочке с фазными проводами и иметь равное с ними сечение.

        б) В сетях с изолированной нейтралью допускается прокладка заземляющих проводников металлической связи корпусов оборудования отдельно от фазных проводов. При этом их сечение должно быть не менее 2,5см2.

— металлические корпуса  переносных электроприёмников:

       а) Заземление или зануление  переносных электроприёмников должно осуществляться специальной жилой, расположенной в одной оболочке с фазными жилами переносного провода и присоединяемый к корпусу электроприёмника  и к специальному контакту вилки втычного соединителя. Сечение этой жилы должно быть равным сечению фазных проводов. Использование для  этой цели нулевого рабочего провода ,в том числе расположенного в одной оболочке не допускается.

       б) Жилы проводов и кабелей, используемые для заземления или зануления переносных электроприёмников, должны быть медными, гибкими, сечением не менее 1,5мм2 для переносных электроприёмников в промышленных установках и не менее 0,75мм2 для

бытовых переносных электроприёмников.

 

Заземляющие и нулевые защитные проводники в электроустановках до 1кВ  в соответствии с ПУЭ п. 1.7.76 табл. 1.7.1. должны иметь размеры не менее приведенных в таблице 1.

 

Таблица 1. Наименьшие размеры заземляющих и нулевых защитных проводников.

 

Наименование

Медь

Алюминий

Сталь

В

Зданиях

В

Наружных установках

В земле

1

2

3

4

5

6

Неизолированные проводники:

Сечение, мм²

Диаметр, мм

4

6

5

6

10

Изолированные провода:

Сечение, мм²

1.5*

2.5

Заземляющие и нулевые жилы кабелей и многожильных проводов в общей оболочке с фазными жилами:

Сечение, мм²

1

2.5

Угловая сталь:

Толщина полки, мм

2

2.5

4

1

2

3

4

5

6

Полосовая сталь:

Сечение, мм²

Толщина, мм

24

3

48

4

48

4

Водогазопроводные трубы (стальные):

Толщина стенки, мм

2.5

2.5

3.5

Тонкостенные трубы (стальные):

Толщина стенки, мм

1.5

2.5

 

  • При прокладке проводов в трубах сечение нулевых защитных проводников допускается применять равным 1мм, если фазные проводники имеют то же сечение.

4.3         В соответствии с ПТЭЭП Приложение 1, измеренное значение сопротивления цепи между заземленными установками и элементами заземленной установки должно быть не выше 0,05 Ома.

4.4         Во взрывоопасных зонах любого класса подлежат занулению ( заземлению):

-Электроустановки при всех напряжениях переменного и постоянного тока;

-Электрооборудование, установленное на занулённых (заземленных) металлических конструкциях  (которые  в невзрывоопасных зонах разрешается не занулять (не заземлять))

Это требование не относится к электрооборудованию, установленному внутри зануленных  заземленных)  корпусов шкафов и пультов.

В качестве нулевых защитных (заземляющих) проводников должны быть использованы

проводники, специально предназначенные для этой цели.

4.5         Электросварочные установки подлежат заземлению (занулению).

 В электросварочных установках кроме заземление (зануления) корпуса и других металлических нетоковедущих частей оборудования, как указано выше, как правило, должно быть предусмотрено заземление одного из зажимов (выводов) вторичной цепи источников сварочного тока: сварочных трансформаторов, статических преобразователей и тех двигателей – генераторных преобразователей, у которых обмотки возбуждений генераторов присоединяются к электрической сети без разделительных трансформаторов.

В электросварочных установках, в которых дуга горит между электродом и электропроводящим изделием, следует заземлять (занулять) зажим вторичной цепи источника  сварочного тока, соединяемый проводником (обратным проводом) с изделием.

Если указанное выше по условиям электротехнического процесса не может быть выполнено, а также переносные  и передвижные электросварочные установки, заземление ( зануление ) оборудования которых представляет  значительные трудности, должны быть снабжены устройством защитного отключения.

4.6         На вводе в здание должна быть выполнена система уравнивания потенциалов путем объединения следующих проводящих частей:
— основной (магистральный) защитный проводник;
— основной (магистральный) заземляющий проводник или основной заземляющий зажим;

— стальные трубы коммуникаций зданий и между зданиями;
— металлические части строительных конструкций, молниезащиты, системы центрального отопления, вентиляции и кондиционирования. Такие проводящие части должны быть соединены между собой на вводе в здание.

Рекомендуется по ходу передачи электроэнергии повторно выполнять дополнительные системы уравнивания потенциалов.

4.7         К дополнительной системе уравнивания потенциалов должны быть подключены все доступные прикосновению открытые проводящие части стационарных электроустановок, сторонние проводящие части и нулевые защитные проводники всего электрооборудования (в том числе штепсельных розеток).

Для ванных и душевых помещений дополнительная система уравнивания потенциалов является обязательной и должна предусматривать, в том числе, подключение сторонних проводящих частей, выходящих за пределы помещений. Если отсутствует электрооборудование с подключенными к системе уравнивания потенциалов нулевыми защитными проводниками, то систему уравнивания потенциалов следует подключить к РЕ шине (зажиму) на вводе. Нагревательные элементы, замоноличенные в пол, должны быть покрыты заземленной металлической сеткой или заземленной металлической оболочкой, подсоединенными к системе уравнивания потенциалов. Не допускается использовать для саун, ванных и душевых помещений системы местного уравнивания потенциалов.

 

  • Условия измерений.

 

При выполнении измерений, согласно руководству по эксплуатации «Измеритель сопротивления ИС-10, соблюдают следующие условия:

              — измерения производятся в светлое время суток, при естественном или искусственном освещении, при температуре от минус 30 до плюс 40 0С, и относительной влажности воздуха до 90% (при температуре 30 0С). Внешние магнитные поля, кроме поля земного магнетизма, должны отсутствовать.

              — схема цепи заземления на период проверки должна быть полностью смонтирована, укомплектована всеми элементами согласно проекту.

 

  • Метод измерений.

 

6.1 Измерения активного сопротивления зануляющих (заземляющих) защитных проводников выполняют методом прямых измерений.

6.2 Прочность контактных сварок и сварных соединений определяется ударом молотка массой не  более 1 кг.

6.3 Сечение заземляющих (зануляющих) проводников проверяют, измеряя их геометрические размеры с помощью штангенциркуля.

6.4 Измерение сопротивления переходных контактов сети заземления производится Измерителем сопротивления ИС-10.

6.5 За величину измеренного активного сопротивления принимают показания цифрового индикатора.

 

  1. Требования к средства измерения, вспомогательным устройствам.

При выполнении измерений применяются средства измерения и другие технические средства, приведенные в таблице 2.

 

Таблица 2.  Приборы, средства измерений.

Порядковый номер и наименование средства измерений (СИ), испытательного оборудования (ИО), вспомогательных устройств

Обозначение стандарта, ТУ и типа СИ, ИО

Завод-ской

номер

Метрологические характеристики (кл. точности, пределы погрешностей, пределы измерений)

Наименований измеряемой величины

 

1. Измеритель сопротивления заземления

ИС-10

РЛПА.411212.

001ТУ

№5035

Класс точности 1,5

Диапазон:

1- 999 мОм

1,00-9,99 Ом

10,0 — 99,9 Ом

100 — 999 Ом

1 кОм — 9,99 кОм

Погрешность ±3%

Сопротивление заземляющего устройства

2. Провода соединительные

Длина 3 м

 

R=0.035 Ом

 

3. Напильник

    

4. Штангенциркуль

ШЦ-1-125-0,1

ГОСТ 166-80

 

Точность измерения

0.1 мм

Пределы  измерений   0-125 мм

Размеры проводников

5. Молоток

  

Масса 1 кг

Прочность сварных соединений

8.Требования к погрешности измерений.

 

8.1 Погрешность измерения определяется классом применяемых приборов.

8.2 Приделы допускаемых значений погрешности ИС-10, согласно паспорту, в диапазоне измерений равен ±1,5% .

 

  1. Подготовка к выполнению измерений.

 

При подготовке к выполнению измерений проводят следующие работы:

  1. Подготовить рабочее место в соответствии с требованиями ПОТЭЭ.
  2. Убедиться в отсутствии напряжения на корпусе электроустановки и зануляющем (заземляющем) проводнике с помощью указателя напряжения.

9.3 Места соединения прибора с заземляющей проводкой и с заземлённым объектом зачистить напильником до металлического блеска.

9.4 Измерение сопротивления переходных контактов сети заземления производится Измерителем сопротивления ИС-10.

 

  1. Последовательность и порядок выполнения измерения.

При выполнении измерений выполняют следующие операции:

10.1 Проверить надёжность сварки и болтового соединений в местах соединений зануляющих (заземляющих) проводников места и надёжность присоединения выводов заземлителей к заземлённой магистрали и к аппаратам,  проходы через монтажные перекрытия и стены. Качество контактных сварок и сварных соединений определяется ударом молотка массой не более 1кг. Молоток (кувалда) должен быть надёжно закреплён на ручке и осмотрен перед применением.

10.2 Проверить соответствие сечений зануляющих (заземляющих) проводников требованиям ПУЭ и проектным данным. Сечение заземляющих (зануляющих) проводников проверяют, измеряя их геометрические размеры с помощью штангенциркуля.

10.3 Измерить сопротивление цепи заземления при помощи измерителя сопротивления ИС-10  (в соответствии с рисунком 1 приложения 1) в следующем порядке:

  • Произвести корректировку пробора:
  • Замкнуть между собой концы измерительных кабелей, войти в «МЕНЮ» и выбрать функцию «КАЛИБР.>0<» и нажать «Rx».Прибор произведет измерение сопротивление кабелей и запишет результат в память. На индикаторе появится результат измерения и надпись «ГОТОВО»
  • привернуть струбцину соединительного кабеля к общей шине заземляющей проводки и соединить токоведущий зажим с гнездом прибора (Т1) кабелем РЛПА.685551.002 либо кабелем РАПМ.685442.003
  • Кабелем РЛПА.685551.002-3 соединить наконечник щупа с гнездом прибора(Т2)
  • Кнопкой «Режим» выбрать двухпроводной метод измерения;
  • прижать острие щупа к зачищенному месту на корпусе заземленного объекта и кратковременно нажать кнопку «Rx» и произвести измерение.

 

  1. Обработка результатов измерений.

 

  1. При наличии металлосвязи между заземленными элементами и заземлителем сопротивление переходных контактов должно находиться в пределах 0,05¸0,1 Ом, т.е. прибор практически показывает величину сопротивления вспомогательных проводов.

11.2 В случае неудовлетворительного состояния переходных контактов или обрыва сети заземления прибор покажет величину, значительно превышающую сопротивление вспомогательных проводов.

11.3 Сопротивление проводов часто применяемых в практике монтажа электроустановок зданий при разных сечениях и длине приведены в таблице 3.

 

Таблица 3. Сопротивления проводов.

Сечение проводов,

Мм²

Сопротивление медных/алюминиевых проводов в Омах при длине (метров)

5

10

15

20

25

30

35

40

45

50

1,0

0,0925

0,185

0,28

0,37

0,46

0,55

0,65

0,74

0.83

0,92

1,5

0,06

0,123

0,185

0,25

0,3

0,37

0,43

0,49

0,55

0,62

2,5

0,037

0,063

0,074

0,125

0,11

0,19

0,148

0,25

0,185

0,31

0,22

0,38

0,23

0,44

0,29

0,5

0,33

0,56

0,37

0,625

4,0

0,023

0.04

0.046

0.08

0.07

0.117

0.092

0.156

0.116

0.195

0.14

0.23

0.16

0.27

0.185

0.31

0.2

0.35

0.23

0.39

6,0

 

0.0154

0.026

0.0308

0.052

0.046

0.078

0.0617

0.1041

0.077

0.130

0.0925

0.156

0.108

0.182

0.1234

0.208

0.1388

0.234

0.154

0.26

 

 

Сопротивление заземляющего устройства с учетом погрешности определяется по формуле:

, где

Rи – показания прибора, Ом;

dи – относительная погрешность измерения %, определяемая по формуле:

 

, где

d0 – основная относительная погрешность, равная ±1,5%,

d2 – дополнительная относительная погрешность, вызванная влиянием постороннего магнитного поля, равная ±1%,

d1 – дополнительная относительная погрешность по температуре %,

, где

Т0 – температура окружающего воздуха при измерении.

 

  1. Контроль точности результатов измерений.

 

Контроль точности результатов измерений обеспечивается ежегодной поверкой приборов в органах Госстандарта РФ.  Приборы должны  иметь действующие свидетельства о госповерке. Выполнение измерений прибором с просроченным сроком поверки не допускается.

 

  1. Оформление результатов измерений.
  1. Результаты проверки отражаются в протоколе соответствующей формы.
  2. При заполнении протокола в графе «Вывод на соответствие требованиям» напротив каждого пункта вносить запись: «соответствует» или «не соответствует».
  3. Перечень замеченных недостатков должен предъявляться заказчику для принятия мер по их устранению.
  4. В протокол заносятся значения величин, рассчитанные с учетом погрешности измерений в соответствии с разделом 11 данной методики.
  5. Протокол испытаний и измерений оформляется в виде электронного документа и хранится в соответствующей базе данных. Второй экземпляр протокола распечатывается и хранится в архиве ЭТЛ.
  • Копии протоколов испытаний и измерений подлежат  хранению  в архиве  электротехнической лаборатории  не менее 6 лет.

 

  1. Требования к квалификации персонала.

 

К выполнению измерений и испытаний допускают лиц, прошедших специальное  обучение и аттестацию с присвоением  группы по электробезопасности не ниже III  при работе в электроустановках до 1000В, имеющих запись о допуске к испытаниям и измерениям в электроустановках до 1000В.

Измерения сопротивления изоляции должен проводить только квалифицированный персонал в составе бригады, в количестве не менее 2 человек. Производитель работ и члены бригады должны иметь не ниже 4 разряда.

 

  1. Требования к обеспечению безопасности при выполнении измерений и экологической безопасности.

 

  1. Измерения проводят по распоряжению.
  2. При выполнении измерений  должны  выполняться все организационные и технические мероприятия по технике безопасности, а именно:
  • перед началом работы проверяется отсутствие напряжения и остаточного заряда на корпусе испытуемого оборудования указателем напряжения до 1000В.
  • при выполнении работ применяется  напильник и щуп с рукоятками из изолированного материала или же лицо, проводящее измерения должно работать в диэлектрических перчатках.

3. Применяемый метод проверки цепи зануляющих (заземляющих) проводников опасности для окружающей среды не представляет

Что такое заземление по сопротивлению и реактивному сопротивлению? Определение и объяснение

Сопротивление заземления

В этом типе заземления нейтрали нейтраль системы соединена с землей через одно или несколько сопротивлений. Заземление через сопротивление ограничивает токи короткого замыкания. Он защищает систему от переходных перенапряжений. Резистивное заземление снижает риск возникновения электрической дуги и обеспечивает защиту от замыкания на землю.

Значение сопротивления, используемое в системе заземления нейтрали, не должно быть ни очень высоким, ни очень низким, как показано на рисунке ниже.

Очень низкое сопротивление делает систему заземленной, а очень высокое сопротивление делает систему незаземленной. Значение сопротивления выбирается таким образом, чтобы ток замыкания на землю был ограничен, но при этом достаточные протекания тока на землю позволяли срабатывать защиты от замыканий на землю. Как правило, замыкание на землю можно ограничить до 5–20% от замыкания на землю в трехфазной линии.

Реактивное заземление

В системе с заземлением по реактивному сопротивлению между нейтралью и землей вводится реактивное сопротивление для ограничения тока короткого замыкания, как показано на рисунке ниже.

Чтобы минимизировать переходные перенапряжения, ток замыкания на землю в системе с реактивным заземлением не должен быть менее 25% тока трехфазного замыкания. Это значительно больше, чем минимальный ток, желаемый для систем с заземлением через сопротивление.

.

% PDF-1.4 % 506 0 объект > endobj xref 506 86 0000000016 00000 н. 0000003447 00000 н. 0000003580 00000 н. 0000004627 00000 н. 0000004769 00000 н. 0000004796 00000 н. 0000005105 00000 н. 0000005219 00000 п. 0000008295 00000 н. 0000010601 00000 п. 0000010753 00000 п. 0000011299 00000 п. 0000011779 00000 п. 0000012056 00000 п. 0000012630 00000 п. 0000012657 00000 п. 0000012978 00000 п. 0000013253 00000 п. 0000013803 00000 п. 0000016706 00000 п. 0000020139 00000 п. 0000023720 00000 п. 0000026323 00000 п. 0000026957 00000 п. 0000027390 00000 н. 0000027477 00000 п. 0000027705 00000 п. 0000028396 00000 п. 0000028621 00000 п. 0000029128 00000 п. 0000030994 00000 п. 0000033698 00000 п. 0000047570 00000 п. 0000047683 00000 п. 0000047753 00000 п. 0000047841 00000 п. 0000048029 00000 п. 0000053674 00000 п. 0000053744 00000 п. 0000053829 00000 п. 0000057192 00000 п. 0000057465 00000 п. 0000057638 00000 п. 0000057927 00000 п. 0000060933 00000 п. 0000061011 00000 п. 0000061090 00000 п. 0000061187 00000 п. 0000061336 00000 п. 0000061660 00000 п. 0000061715 00000 п. 0000061831 00000 п. 0000061909 00000 п. 0000062235 00000 п. 0000062290 00000 п. 0000062406 00000 п. 0000062484 00000 п. 0000062809 00000 п. 0000062864 00000 п. 0000062980 00000 п. 0000063058 00000 п. 0000063383 00000 п. 0000063438 00000 п. 0000063554 00000 п. 0000070184 00000 п. 0000070223 00000 п. 0000103038 00000 н. 0000103077 00000 н. 0000113173 00000 н. 0000113212 00000 н. 0000185440 00000 н. 0000185518 00000 н. 0000253801 00000 н. 0000254256 00000 н. 0000254334 00000 н. 0000366320 00000 н. 0000366769 00000 н. 0000366847 00000 н. 0000457123 00000 н. 0000457574 00000 н. 0000457652 00000 н. 0000548085 00000 н. 0000548533 00000 н. 0000552009 00000 н. 0000684266 00000 н. 0000002016 00000 н. трейлер ] / Назад 3530785 >> startxref 0 %% EOF 591 0 объект > поток h ެ UmLSg> m - ի С.\ +] RhA, (ȥ @ ~ MqN7t [b \ 4Y2-̒-sjdv {f y:

.

Майк Холт Пейдж не найден


888.632.2633 (888.NEC.CODE) 3604 Parkway Blvd, Ste 3, Leesburg FL 34748

«... а я и дом мой будем служить Господу» [Иисус Навин 24:15]

Рассылка новостей | Оставайся на связи:
.

Проектирование системы заземления в сети подстанции

Проектирование системы заземления в сети подстанции

Введение в сеть заземления подстанции

In высокого и среднего напряжения [1] Подстанции с воздушной изоляцией ( AIS ) электромагнитное поле , , которое вызывает статические заряды оголенных кабелей и проводов, а также атмосферные условия ( скачков ), индуцируют напряжения на обесточенных частях установки, которые создают разности потенциалов между металлическими частями и землей, а также между разными точками земли .

Подобные ситуации могут возникать при коротких замыканиях между токоведущими частями установки и токоведущими частями , например, в коротком замыкании фазы на землю .

Эти разности потенциалов дают начало ступенчатому потенциалу и потенциал касания или комбинации обоих , которые могут привести к циркуляции электрического тока через тело человека , что может причиняют вред людям .

Напряжение прикосновения ( E t ) можно определить как максимальную разность потенциалов, которая существует между заземленной металлической конструкцией, к которой можно прикоснуться рукой, и любой точкой земли при протекании тока повреждения.

Обычно считается, что расстояние между металлической конструкцией и точкой на земле составляет 1 м.

Шаговое напряжение ( E s ) определяется как максимальная разность потенциалов, которая существует между ножками при протекании тока повреждения.

Обычно считается, что расстояние между ножками составляет 1 м.

Частным случаем ступенчатого напряжения является передаваемое напряжение ( E trrd ) : когда напряжение передается на подстанцию ​​или с подстанции от или к удаленной точке, внешней по отношению к месту подстанции.

Другие концепции: :

  • Повышение потенциала земли ( GPR ): Максимальный электрический потенциал, который может получить сеть заземления подстанции относительно удаленной точки заземления, предположительно находящейся под потенциалом удаленной земли.Это напряжение, GPR, равно максимальному току сети, умноженному на сопротивление сети.
  • Напряжение сети ( E м ): Максимальное напряжение прикосновения в пределах ячейки сети заземления.
  • Напряжение прикосновения металл к металлу ( E мм ): Разница потенциалов между металлическими объектами или конструкциями в пределах подстанции, которые могут быть перекрыты прямым путем из рук в руки или из рук в руки контакт.

На схеме на Рисунке 1 показаны явления, упомянутые выше .

Рисунок 1 - Напряжение прикосновения, шага и передаваемое напряжение

Для минимизации допустимых значений от до из токов, проходящих через тело человека , до обеспечения электробезопасности для человек, работающих в пределах или рядом с установка , а также до ограничить любые возможные электрические помехи стороннему оборудованию , AIS должен быть снабжен заземлением (или заземлением ) системой , к которой все металлические не находящиеся под напряжением части к установке должны быть подключены , такие как металлические конструкции , заземлители, разрядники для защиты от перенапряжений, корпуса распределительных щитов и двигателей, рельсы трансформаторов и металлические ограждения .

Поскольку заземление влияет на уровни перенапряжения энергосистемы и ток короткого замыкания , а также на определение систем защиты, система заземления должна быть спроектирована таким образом, чтобы гарантировать надлежащую работу защитных устройств, таких как защитное реле и перенапряжения. разрядники .

Проектирование и конструкция системы заземления должны гарантировать, что система будет работать в течение ожидаемого срока службы установки, и поэтому должны учитывать будущие дополнения и максимальный ток короткого замыкания для окончательной конфигурации.

Система заземления состоит из ячеек скрытого в земле медного кабеля , с дополнительных заземляющих стержней , и должна быть рассчитана, рекомендуется использовать IEEE Std. 80-2000 .

Важные формулы для проектирования системы заземления сети подстанции

Поперечное сечение подземного кабеля следует рассчитывать в соответствии со значением тока короткого замыкания фазы на землю , но это обычное явление использовать для этой цели трехфазный ток короткого замыкания .

Для этого расчета необходимо использовать следующую формулу : Где:

  • I ” K1 - ток короткого замыкания между фазой и землей [ A ]
  • t с - продолжительность неисправности [ с ]
  • Δθ - максимально допустимое повышение температуры [ ° C ] - для неизолированной меди Δθ = 150 ° C

В соответствии со стандартом IEEE максимально допустимого шага и потенциала прикосновения и максимально допустимого тока через тело человека ( I hb ) и сопротивления сети заземления ( R g ) рассчитываются по формулам:

Максимально допустимый потенциал шага

Максимально допустимый потенциал прикосновения

Максимально допустимый ток через человека body

Сопротивление земной сети

Где:

  • C s - коэффициент снижения характеристик поверхностного слоя и рассчитывается по формуле:
  • t s - продолжительность разлом [ с ]
  • ρ с - удельное сопротивление материала поверхности [ Ом. м ] типичное значение для мокрого щебня / гравия: 2,500 Ом м
  • ρ - удельное сопротивление земли под материалом поверхности [ Ом . м ]
  • h с - толщина материала поверхности [ м ]
  • A - площадь, занимаемая наземной сеткой [ м 2 ]
  • l T - общая скрытая длина проводника, включая заземляющие стержни [ м ]

Если не используется защитный поверхностный слой, то C s = 1 и ρ s = ρ

Эти расчеты обычно выполняются с использованием специального программного обеспечения .

Сеть заземления подстанции

На Рисунке 2 показан пример сети заземления.

Рисунок 2 - Сеть заземления

Наиболее подходящие методы для соединения соединений сети заземления: :

a.) Экзотермическая сварка

Рисунок 3 - Экзотермическая сварка

Экзотермическая сварка - это процесс постоянного соединения проводников , в котором используется расплавленного металла и формы , который основан на химической реакции между оксидами металла ( проводник ) и воспламеняющимся алюминиевым порошком , что выступает в роли топлива , с выделением тепловой энергии .Эта химическая реакция представляет собой пиротехнический состав , известный как термит .

Необходимо гарантировать, что количество экзотермических сварок, выполненных с каждой формой, не будет превышать указаний производителя.

b .) Разъем C :

с использованием гидравлического обжимного инструмента и матриц с размером , подходящим для размера разъемов .

Рисунок 4 - Соединитель C и обжимной инструмент

Рядом с блоками управления автоматических выключателей, переключателей и разъединителей необходимо установить металлический эквипотенциальный мат , подключенный к системе заземления , аналогично показанный на рисунке 5.

Рисунок 5 - Металлический эквипотенциальный мат

Полезно знать:

[1] При U n номинальное напряжение сети: HV - U n ≥ 60 кВ ; MV - 1 кВ n ≤ 49,5 кВ .

Об авторе: Мануэль Болотинья
- Диплом в области электротехники - Энергетика и энергетические системы (1974 - Высший технический институт / Лиссабонский университет)
- Магистр электротехники и вычислительной техники (2017 - Faculdade de Ciências e Tecnologia / Nova University of Lisbon)
- старший консультант по подстанциям и энергосистемам; Профессиональный инструктор

Похожие сообщения:

.

Смотрите также