Назначение контура заземления подстанции


Назначение заземлений и характеристики заземляющих устройств

Страница 58 из 66

ГЛАВА 16
ЗАЗЕМЛЕНИЯ И ЗАЗЕМЛЯЮЩИЕ УСТРОЙСТВА СЕЛЬСКИХ ЭЛЕКТРОУСТАНОВОК
§ 46. Назначение заземлений и характеристики заземляющих устройств

Назначение заземления и основные определения.

При работе сельских электроустановок (станций, подстанций и линий электропередачи) возможны случаи прикосновения людей и животных к токоведущим частям установок, находящимся под напряжением. Не исключены прикосновения и к частям, нормально не находящимся под напряжением, но оказавшимся под ним вследствие пробоя изоляции этих частей. В обоих случаях через тело людей и животных будет проходить электрический ток, который может вызвать смертельный исход.
Для защиты людей и животных от опасности поражения электрическим током предусматривают заземление, т. е. соединение оснований и металлических корпусов электрооборудования с землей. Заземления выполняют также для обеспечения нормальных условий работы электроустановки и для отвода грозовых разрядов в землю.
По назначению различают защитное, рабочее и грозозащитное заземления.
Защитное заземление выполняют для того, чтобы обеспечить соответствующую безопасность людей и сельскохозяйственных животных от поражения электрическим током при нарушениях изоляции элементов электроустановки. Рабочее заземление (например, заземление нейтрали трансформаторов напряжением 110 кВ) обеспечивает определенный режим работы электроустановки, а грозозащитное— отвод тока молнии от стержневых и тросовых молниеотводов и разрядников.
В общем случае под заземлением понимают преднамеренное соединение элементов электроустановки с заземляющим устройством, состоящим из заземлителей и заземляющих проводников. Заземлителем называют металлический проводник или группу электрически соединенных проводников, непосредственно соприкасающихся с землей. Их назначение — обеспечить электрическое соединение с землей. Заземлители бывают естественными и искусственными. Заземляющими проводниками называют металлические проводники, соединяющие заземляемые части электроустановки и корпуса оборудования с заземлителем.
В качестве естественных заземлителей в установках напряжением до 1000 В могут быть использованы подземные водопроводные трубы, металлические конструкции зданий и сооружений, имеющие хорошее соединение с землей. Искусственные заземлители выполняют в виде стальных стержней круглого или плоского сечения. Материалом для одиночных стержневых заземлителей может быть также угловая сталь.
Повреждение изоляции электроустановки может вызвать замыкание на землю и замыкание на корпус. Замыканием на землю называют случайное замыкание (соединение) находящихся под напряжением токоведущих частей установки непосредственно с землей. Замыканием на корпус называется электрическое соединение токоведущих частей электроустановки с заземленными основаниями и корпусами электрооборудования.
Заземлению подлежат все корпуса электрических машин, трансформаторов, выключателей, аппараты и приводы к ним, вторичные обмотки измерительных трансформаторов, каркасы распределительных щитов, шкафов и щитов управления, металлические конструкции подстанций и распределительных устройств, металлические оболочки силовых кабелей и корпусов кабельных муфт, разрядники, искровые промежутки, молниеотводы и тросы на каждой опоре.

Характеристики заземляющих устройств.

При замыкании токоведущих частей на землю через место замыкания проходит электрический ток. В зависимости от величины этого тока различают электроустановки с малыми и большими токами замыкания на землю. Если в электроустановке напряжением выше 1000 В однофазный ток замыкания на землю равен или меньше 500 А, она считается установкой с малыми токами замыкания на землю. Если указанный ток больше 500 А, считается, что установка имеет большие токи замыкания на землю.
Допустимая величина сопротивления заземляющих устройств для указанных установок принимается различной. Так, для установок с малыми токами замыкания на землю сопротивление заземляющего устройства в любое время года не должно превышать 10 Ом и, кроме того, быть не более величины Ом при использовании только для  установки выше 1000 В и не более Ом при использовании заземляющего устройства также и для установок напряжением до 1000 В. В приведенных выражениях  — расчетный ток замыкания на землю (А).
В установках с большими токами замыкания на землю наибольшее допустимое значение сопротивления заземляющих устройств равно 0,5 Ом.
Норма для сопротивлений заземляющих устройств опор линий электропередачи напряжением выше 1000 В устанавливается в зависимости от удельного сопротивления земли. Эти нормы приведены ниже.


Удельное сопротивление земли,
Ομ·м

Сопротивление заземляющего устройства, Ом

до 100

до 10

от 100 до 500

» 15

» 500 » 1000

» 20

более 1000

» 30

Для электроустановок напряжением до 1000 В, работающих с глухим заземлением нейтрали, у генераторов и трансформаторов мощностью 100 кВА и менее сопротивление заземляющих устройств не должно быть больше 10 Ом, а при мощности последних выше 100 кВА — не более 4 Ом. При параллельной работе генераторов и трансформаторов учитывают их суммарную мощность.
Заземляющие устройства воздушных линий напряжением до 1000 В, предназначенные для защиты от атмосферных перенапряжений, должны иметь сопротивление заземления не выше 50 Ом.

% PDF-1.6 % 4097 0 объект > endobj xref 4097 91 0000000016 00000 н. 0000002213 00000 н. 0000010288 00000 п. 0000010564 00000 п. 0000010608 00000 п. 0000010649 00000 п. 0000010982 00000 п. 0000011056 00000 п. 0000011206 00000 п. 0000011307 00000 п. 0000011435 00000 п. 0000011579 00000 п. 0000011711 00000 п. 0000011832 00000 п. 0000011963 00000 н. 0000012087 00000 п. 0000012211 00000 п. 0000012344 00000 п. 0000012554 00000 п. 0000012678 00000 п. 0000012825 00000 п. 0000012956 00000 п. 0000013074 00000 п. 0000013271 00000 п. 0000013398 00000 п. 0000013583 00000 п. 0000013698 00000 п. 0000013817 00000 п. 0000013950 00000 п. 0000014084 00000 п. 0000014218 00000 п. 0000014421 00000 п. 0000014587 00000 п. 0000014702 00000 п. 0000014807 00000 п. 0000014979 00000 п. 0000015115 00000 п. 0000015250 00000 п. 0000015420 00000 н. 0000015539 00000 п. 0000015690 00000 н. 0000015807 00000 п. 0000016009 00000 п. 0000016115 00000 п. 0000016296 00000 п. 0000016411 00000 п. 0000016530 00000 п. 0000016661 00000 п. 0000016796 00000 п. 0000016933 00000 п. 0000017135 00000 п. 0000017281 00000 п. 0000017391 00000 п. 0000017515 00000 п. 0000017642 00000 п. 0000017786 00000 п. 0000017964 00000 п. 0000018090 00000 н. 0000018221 00000 п. 0000018342 00000 п. 0000018528 00000 п. 0000018638 00000 п. 0000018773 00000 п. 0000018901 00000 п. 0000019025 00000 п. 0000019159 00000 п. 0000019274 00000 п. 0000019593 00000 п. 0000083751 00000 п. 0000273862 00000 н. 0000401228 00000 н. 0000528807 00000 н. 0000618107 00000 п. 0000662644 00000 н. 0000727975 00000 н. 0000772264 00000 н. 0000813493 00000 н. 0000842224 00000 н. 0000845971 00000 п. 0000846154 00000 н. 0000846318 00000 н. 0000846559 00000 н. 0000847147 00000 н. 0000847369 00000 н. 0000847669 00000 н. 0000847847 00000 н. 0000848083 00000 н. 0000848451 00000 н. 0000848504 00000 н. 0000003510 00000 н. 0000002459 00000 н. трейлер] >> startxref 0 %% EOF 4098 0 объект > / PageMode / UseOutlines / PageLayout / SinglePage / OpenAction 4101 0 R / ViewerPreferences> / Metadata 615 0 R >> endobj 4187 0 объект > поток V) G @ quS * NI \ GԬGeG124yT} v1f "G) 'լ, ad ~ ɃY, Mpz

.

Предотвращение заземления в конструкции вашей печатной платы | Блог о проектировании печатных плат

Altium Designer

| & nbsp 30 марта 2018 г.

Я думаю, мы все там были.Вы покупаете эту потрясающую стереосистему только для того, чтобы слышать знакомый гудящий звук на заднем плане. Когда вы приносите его обратно в магазин, продавец обвиняет производителя. Затем производитель стереосистемы обвиняет производителя компонентов, и производитель компонентов не может никого винить. На самом деле источником проблемы являются контуры заземления, которые образуются из-за некачественной конструкции.

Контуры заземления создают шум в электрических цепях. В плоскостях заземления могут существовать большие токи, а разница напряжений между соединениями заземления вызывает образование контура заземления.Звон или гудение в некоторых аудиосистемах - лишь одно из проявлений шума контура заземления.

Почему вообще важна маршрутизация по земле?

Если вы помните свой класс «Электроника 101», вы знаете, что все электрические токи движутся по замкнутым контурам. На печатной плате сигналы маршрутизируются вокруг платы с использованием сигнальных и близлежащих обратных трасс. Когда сигнал достигает полной мощности и проходит через плату, сигнальная и обратная трассы создают токовую петлю. Сила индуцированного обратного тока зависит от ряда факторов.Если мы кратко рассмотрим дорожку и ее заземляющую пластину изолированно, ток индуцируется в заземляющей пластине через паразитную емкость между дорожкой и ее заземляющей пластиной.

Так почему это важно? Если дорожка находится ближе к плоскости заземления, емкостный импеданс, воспринимаемый сигналом на дорожке, будет ниже, что заставляет обратный путь следовать ближе к области под дорожкой. Это означает, что если вы хотите обеспечить надежный обратный сигнал на землю, ваш сигнал и возврат должны быть расположены как можно ближе друг к другу.Размещение сигнальной дорожки ближе к ее заземляющей пластине обеспечит более низкую индуктивность контура, что помогает снизить восприимчивость к электромагнитным помехам. Помещая заземляющую пластину ниже сигнальных дорожек, возвратный сигнал будет естественным образом формироваться ниже сигнальной дорожки, и ваша цепь будет завершена.

Соединения с плоскостью заземления

Когда заземляющая пластина расположена непосредственно под плоскостью, содержащей ваши сигнальные дорожки, все ваши сигнальные дорожки будут индуцировать свой собственный обратный путь непосредственно в заземляющей пластине.Это должно продемонстрировать удобство использования большой плоскости заземления для маршрутизации обратных сигналов, а не маршрутизации обратных трасс по отдельности.

Нет заземления - идеальный проводник; у него есть сопротивление и реактивность. Если две сигнальные дорожки соединяются с землей в разных точках, между этими двумя соединениями может существовать небольшой перепад напряжения. Это основной источник контуров заземления печатной платы в плоскости заземления. Потенциалы контура заземления и обратного пути обычно составляют порядка микровольт, но этого все же достаточно, чтобы вызвать проблемы с целостностью сигнала, особенно в слаботочных устройствах.


Правильное планирование может уменьшить несколько потенциальных проблем контура заземления

Хотя шум, который возникает из-за контуров заземления, невозможно полностью устранить, его можно значительно уменьшить, так что его влияние на целостность сигнала сведено к минимуму. Вместо того, чтобы соединять заземляющие соединения в разных точках, лучше провести трассы к заземляющему соединению с помощью заземляющего слоя. Это сводит к минимуму любую потенциальную разницу между соединениями заземляющих проводов печатных плат, просто уменьшая расстояние между ними.

Заземляющий возврат к источнику питания также должен быть подключен к заземляющей пластине в одной точке. Когда пластина заземления подключена к источнику питания только в одной точке, вся пластина заземления будет иметь почти одинаковый потенциал. Если заземляющая пластина подключена к возвратной линии источника питания в нескольких точках, могут образоваться контуры заземления из-за разницы напряжений между этими подключениями. Использование единой и правильной точки заземления устраняет эти петли.

Правильная топология

К сожалению, только более простые конструкции с низким уровнем взаимосвязанности компонентов позволят разместить заземляющую пластину, которая проходит под каждой сигнальной дорожкой.Расширение заземляющего слоя под дорожками сигнала обычно является хорошей идеей для низкочастотных устройств. Сохранение небольшой площади между дорожками сигнала и заземляющим слоем также снижает восприимчивость к внешним электромагнитным помехам.

Распределение большой заземляющей поверхности под каждым компонентом может быть нежелательным даже в высокочастотных приложениях. Например, в схемах с высокочастотными смешанными сигналами, управляемыми кварцевыми генераторами, размещение заземляющего слоя непосредственно под тактовой частотой сигнала создает патч-антенну с центральным питанием.Это фактически усугубит проблемы с электромагнитными помехами, и целостность сигнала, вероятно, будет ухудшена без значительного экранирования.

Если вы решите использовать несколько плоскостей заземления, можно предотвратить образование контуров заземления между плоскостями заземления, используя правильную топологию. Вместо того, чтобы соединять плоскости заземления в кольцевой или гирляндной топологии, плоскости заземления можно подключать к заземлению источника питания в топологии звезды. Последовательное соединение ваших заземляющих плоскостей может привести к образованию контуров заземления между заземляющими плоскостями.Топология звезды соединяет каждую плоскость напрямую с источником питания и исключает петли между плоскостями заземления.


Используйте топологию звезды для соединения нескольких заземляющих плоскостей

Когда в вашем проекте используется несколько плоскостей заземления, старайтесь избегать трассировки трасс по нескольким плоскостям заземления. Трассы следует прокладывать только по их собственной заземляющей плоскости. Это особенно важно при проектировании смешанных сигналов. Например, если цифровой сигнал маршрутизируется по аналоговой заземляющей поверхности, между цифровыми и аналоговыми сигналами может возникнуть шумовая связь.Это сводит на нет всю цель звездной топологии.

Инструмент PDN Analyzer ™ в Altium Designer® позволяет оптимизировать проект, сводя к минимуму проблемы целостности сигнала. Кроме того, интерфейс 3D-дизайна печатной платы, безусловно, может помочь визуализировать ваши проекты. Чтобы узнать больше, поговорите с экспертом Altium сегодня.

.

Классификация электрических подстанций на основе 5

Подстанция является средством передачи энергии от генерирующего блока к конечному потребителю. Он состоит из различных типов оборудования, таких как трансформатор, генератор, силовой кабель, который помогает при передаче энергии. Генерация, передача и распределение - основная работа подстанции.

Подстанция, вырабатывающая энергию, известна как генерирующая подстанция. Точно так же передающая подстанция передает мощность, а распределительные подстанции распределяют мощность по нагрузке.Подкатегории электрических подстанций объясняются ниже.

Классификация подстанций

Подстанции можно классифицировать множеством способов, в том числе по характеру обязанностей, предоставляемому рабочему напряжению, важности и конструкции.

Классификация подстанций по характеру обязанностей

Классификация подстанции по характеру функций подробно поясняется ниже.

Повышающие или первичные подстанции - Такие типы подстанций генерируют низкое напряжение, например 3.3, 6,6, 11 или 33 кВ. Это напряжение повышается с помощью повышающего трансформатора для передачи мощности на большие расстояния. Находится возле генерирующей подстанции

.

Подстанции первичной сети - Эта подстанция снизила значение повышенных первичных напряжений. Выход подстанции первичной сети действует как вход вторичной подстанции. Вторичная подстанция используется для понижения входного напряжения до более низкого для дальнейшей передачи.

Понижающие или распределительные подстанции - Эта подстанция размещается рядом с центром нагрузки, где первичное распределение понижается для дополнительной передачи.Вторичный распределительный трансформатор питает потребителя по линии обслуживания

.

Классификация подстанций по оказанным услугам

Трансформаторные подстанции - В подстанциях такого типа устанавливаются трансформаторы для преобразования мощности с одного уровня напряжения на другой по мере необходимости.

Коммутационные подстанции - Подстанции, используемые для коммутации линии электропередачи без нарушения напряжения, известны как коммутационные подстанции.Подстанции этого типа размещаются между ЛЭП.

Преобразовательные подстанции - В таких типах подстанций мощность переменного тока преобразуется в мощность постоянного тока или наоборот, или она может преобразовывать высокие частоты в более низкие частоты или наоборот.

Классификация подстанций по рабочему напряжению

Подстанции по рабочему напряжению можно отнести к

Подстанции высокого напряжения (ВН) - Напряжения от 11 кВ до 66 кВ.

Подстанции сверхвысокого напряжения - Напряжения от 132 кВ до 400 кВ.

Сверхвысокое напряжение - Рабочее напряжение выше 400 кВ.

Классификация подстанций по важности

Сетевые подстанции - Эта подстанция используется для передачи основной мощности из одной точки в другую. Если на подстанции возникает какая-либо неисправность, это влияет на непрерывность всей подачи.

Городские подстанции - Эти подстанции понижают напряжение до 33/11 кВ для большего распределения в городах.Если на этой подстанции происходит какая-либо неисправность, то блокируется электроснабжение всего города.

Классификация подстанций по конструкции

Подстанции внутреннего типа - В подстанциях такого типа аппаратура устанавливается внутри здания подстанции. Такие подстанции обычно рассчитаны на напряжение до 11 кВ, но могут быть повышены до 33 кВ или 66 кВ, когда окружающий воздух загрязнен пылью, дымом или газами и т. Д.

Наружные подстанции - Эти подстанции делятся на две категории

Подстанции на опоре - Такие подстанции возводятся для распределения электроэнергии в населенных пунктах.Однополюсные или H-полюсные и 4-полюсные конструкции с соответствующими платформами работают для трансформаторов мощностью до 25 кВА, 125 кВА и выше 125 кВА.

Подстанции, монтируемые на фундаменте - Такие типы подстанций используются для установки трансформаторов мощностью 33 000 вольт и выше.

.

WTF - это контуры заземления? | Hackaday

Эти волшебные существа появляются из ниоткуда и поджаривают вашу электронику или раздражают ваши ушные раковины. Понимание их, несомненно, сэкономит вам деньги и нервы. В двух словах, контур заземления - это то, что происходит, когда два отдельных устройства (A и B) отдельно соединяются с землей, а затем также подключаются друг к другу через какой-то кабель связи с землей, создавая петлю. Это обеспечивает два отдельных пути к земле (B может проходить через собственное соединение с землей или может проходить через землю кабеля к A, а затем к земле A), и означает, что ток может начать течь непредвиденным образом.Это особенно заметно в аналоговых аудиовизуальных установках, где результатом является звуковой гул или видимые полосы на изображении, но также иногда является причиной необъяснимых отказов оборудования.

Вы можете найти петлю?

Один из примеров - кабельное телевидение. Это аналоговый сигнал, который поступает в ваш дом и заземляется в одном месте, обычно за пределами вашего дома. Кабель извивается к вашему развлекательному центру, где он подключается к вашему ресиверу, который заземлен в другом месте.Это создает петлю и, благодаря электромагнитной индукции, связанной со всеми видами сигналов переменного тока вокруг, паразитный ток, который затем течет через различные цепи. Другой способ думать об этом - как о половине трансформатора; это одиночный контур, и значительная часть этого контура - это сразу после от живого провода электросети здания с постоянно меняющимся током. В аудиооборудовании нередко бывает гул с частотой 50 или 60 Гц из-за эффектов контуров заземления.

Решение

Теперь, когда вы эксперт, решить проблему (или полностью избежать ее) довольно просто.Самый надежный способ - разрезать петлю, то есть удалить кабель или заменить его чем-то, кроме провода. Вы можете переключиться на беспроводную связь, такую ​​как Bluetooth или WiFi. Некоторые проводные протоколы используют дифференциальные сигналы вместо несимметричной передачи сигналов, поэтому нет необходимости в общем заземлении для справки. Переставьте вилки так, чтобы они вставлялись в одну розетку, сделав петлю как можно меньше. Другой вариант - использовать изолятор, который вы можете приобрести для выбранного кабеля или спроектировать в своем проекте с оптоизолятором или изолирующим трансформатором.Не используйте штепсельную вилку и не удаляйте заземляющий контакт, так как это просто устраняет функцию безопасности и может создать опасную ситуацию с корпусом под напряжением.

Когда дело доходит до вашего осциллографа, вполне вероятно, что в какой-то момент вы захотите проверить что-то, что питается от сети, и тогда вы получите совершенно другой тип контура заземления. Если ваша вещь питается от батареи, здесь нет никакой опасности; сходить с ума, потому что нет возможности создать контур заземления. Если он подключен к стене, но через изолированный источник питания (что-то только с двумя контактами и изолирующим трансформатором), все в порядке, потому что по-прежнему нет пути для контура заземления, но вы можете увидеть некоторый шум от грязного питания .

Но если он подключен к сети и имеет контакт заземления (даже косвенно, как устройство, питающееся от USB через блок питания компьютера), существует возможность создать контур заземления, потому что вы подключаете заземленный прицел к другому заземленному устройство через зонд. Зажим заземления на пробнике подключается прямо к контакту заземления, а заземления на всех пробниках соединяются друг с другом, а эти контакты заземления подключаются к заземлению на вашем устройстве. Если это было неясно, лучше сформулировать это так: «все ваши заземления уже подключены друг к другу и связаны с одним и тем же проводом - контактом заземления.«Когда вы подключаете заземляющий зажим к тестируемому устройству, вы создаете контур заземления, который добавит шум к вашим измерениям и, возможно, повредит осциллограф.

Заземление зонда осциллографа подключено. Технически вам нужно закрепить на тестовом устройстве только один зажим заземления. Заземление зонда подключается непосредственно к земле. Они не плавают.

Если вы сделаете ошибку и прикрепите заземляющий зажим к чему-то, что на самом деле не заземлено, у вас будут всевозможные проблемы, так как теперь устройство замкнуто на землю через ваш зонд, который быстро самоуничтожится.Тестирование устройств с заземляющим контактом требует особой осторожности, чтобы не допустить подключения устройств с разными потенциалами. Разорвать контур заземления можно, просто не подключив зажим заземления, хотя это имеет и другие последствия. Здесь лучше всего использовать дифференциальные пробники или подключить тестируемое устройство к изолирующему трансформатору. Однако не , а не удаляйте заземление из вашего прицела, потому что вы будете часто прикасаться к нему, и лучше вас не шокировать.

Итак, подведем итоги: земля - ​​это не просто земля. Для измерения шума лучше всего, чтобы у каждого устройства был один и только один путь к одной точке заземления. Когда есть два или более пути к земле, они могут образовывать петлю, которая улавливает все виды электрических и магнитных помех окружающей среды. Исправить контур заземления так же просто, как разорвать его, но для этого вы должны иметь хорошее мысленное представление обо всех наземных путях в игре. Какой самый сложный контур заземления вы когда-либо видели? Не хватает хороших решений?

.

Смотрите также