Классификация систем заземления


Системы заземления TN-S, TN-C, TNC-S, TT, IT

При проектировании, монтаже и эксплуатации электроустановок, промышленного и бытового электрооборудования, а также электрических сетей освещения, одним из основополагающих факторов обеспечения их функциональности и электробезопасности является точно спроектированное и правильно выполненное заземление. Основные требования к системам заземления содержатся в пункте 1.7 Правил устройства электроустановок (ПУЭ). В зависимости от того, каким образом, и с каким заземляющими конструкциями, устройствами или предметами соединены соответствующие провода, приборы, корпуса устройств, оборудование или определенные точки сети, различают естественное и искусственное заземление.

Естественными заземлителями являются любые металлические предметы, постоянно находящиеся в земле: сваи, трубы, арматура и другие токопроводящие изделия. Однако, ввиду того, что электрическое сопротивление растеканию в земле электротока и электрических зарядов от таких предметов плохо поддается контролю и прогнозированию, использовать естественное заземление при эксплуатации электрооборудования запрещается. В нормативной документации предусмотрено использование только искусственного заземления, при котором все подключения производятся к специально созданным для этого заземляющим устройствам.

Основным нормируемым показателем, характеризующим, насколько качественно выполнено заземление, является его сопротивление. Здесь контролируется противодействие растеканию тока, поступающего в землю через данное устройство — заземлитель. Величина сопротивления заземления зависит от типа и состояния грунта, а также особенностей конструкции и материалов, из которых изготовлено заземляющее устройство. Определяющим фактором, влияющих на величину сопротивления заземлителя, является площадь непосредственного контакта с землей составляющих его пластин, штырей, труб и других электродов.

 

Виды систем искусственного заземления

Основным документом, регламентирующим использование различных систем заземления в России, является ПУЭ (пункт 1.7), разработанный в соответствии с принципами, классификацией и способами устройства заземляющих систем, утвержденных специальным протоколом Международной электротехнической комиссии (МЭК). Сокращенные названия систем заземления принято обозначать сочетанием первых букв французских слов: «Terre» — земля, «Neuter» — нейтраль, «Isole» — изолировать, а также английских: «combined» и «separated» - комбинированный и раздельный.

  • T — заземление.
  • N — подключение к нейтрали.
  • I — изолирование.
  • C — объединение функций, соединение функционального и защитного нулевых проводов.
  • S — раздельное использование во всей сети функционального и защитного нулевых проводов.

В приведенных ниже названиях систем искусственного заземления по первой букве можно судить о способе заземления источника электрической энергии (генератора или трансформатора), по второй – потребителя. Принято различать TN, TT и IT системы заземления. Первая из которых, в свою очередь, используется в трех различных вариантах: TN-C, TN-S, TN-C-S. Для понимания различий и способов устройства перечисленных систем заземления следует рассмотреть каждую из них более детально.

 

1. Системы с глухозаземлённой нейтралью (системы заземления TN)

Это обозначение систем, в которых для подключения нулевых функциональных и защитных проводников используется общая глухозаземленная нейтраль генератора или понижающего трансформатора. При этом все корпусные электропроводящие детали и экраны потребителей следует подключить к общему нулевому проводнику, соединенному с данной нейтралью. В соответствии с ГОСТ Р50571.2-94 нулевые проводники различного типа также обозначают латинскими буквами:

  • N — функциональный «ноль»;
  • PE — защитный «ноль»;
  • PEN — совмещение функционального и защитного нулевых проводников.

Построенная с использованием глухозаземленной нейтрали, система заземления TN характеризуется подключением функционального «ноля» — проводника N (нейтрали) к контуру заземления, оборудованному рядом с трансформаторной подстанцией. Очевидно, что в данной системе заземление нейтрали посредством специального компенсаторного устройства — дугогасящего реактора не используется. На практике применяются три подвида системы TN: TN-C, TN-S, TN-C-S, которые отличаются друг от друга различными способами подключения нулевых проводников «N» и «PE».

Система заземления TN-C

Система заземления TN-C

Как следует из буквенного обозначения, для системы TN-C характерно объединение функционального и защитного нулевых проводников. Классической TN-C системой является традиционная четырехпроводная схема электроснабжения с тремя фазными и одним нулевым проводом. Основная шина заземления в данном случае – глухозаземленная нейтраль, с которой дополнительными нулевыми проводами необходимо соединить все открытые детали, корпуса и металлические части приборов, способные проводить электрический ток..

Данная система имеет несколько существенных недостатков, главный из которых – утеря защитных функций в случае обрыва или отгорания нулевого провода. При этом на неизолированных поверхностях корпусов приборов и оборудования появится опасное для жизни напряжение. Так как отдельный защитный заземляющий проводник PE в данной системе не используется, все подключенные розетки земли не имеют. Поэтому используемое электрооборудование приходится занулять – соединять корпусные детали с нулевым проводом. .

Если при таком подключении фазный провод коснется корпуса, из-за короткого замыкания сработает автоматический предохранитель, и опасность поражения электрическим током людей или возгорания искрящего оборудования будет устранена быстрым аварийным отключением. Важным ограничением при вынужденном занулении бытовых приборов, о чем следует знать всем проживающим в помещениях, запитанных по системе TN-C, является запрет использования дополнительных контуров уравнивания потенциалов в ванных комнатах.

В настоящее время данная система заземления сохранилась в домах, относящихся к старому жилому фонду, а также применяется в сетях уличного освещения, где степень риска минимальна.

Система TN-S

Система заземления TN-S

Более прогрессивная и безопасная по сравнению с TN-C система с разделенными рабочим и защитным нолями TN-S была разработана и внедрена в 30-е годы прошлого века. При высоком уровне электробезопасности людей и оборудования это решение имеет один, но достаточно очень существенный недостаток — высокую стоимость. Так как разделение рабочего (N) и защитного (PE) ноля реализовано сразу на подстанции, подача трехфазного напряжения производится по пяти проводам, однофазного — по трем. Для подключения обоих нулевых проводников на стороне источника используется глухозаземленная нейтраль генератора или трансформатора.

В ГОСТ Р50571 и обновленной редакции ПУЭ содержится предписание об устройстве на всем ответственных объектах, а также строящихся и капитально ремонтируемых зданиях энергоснабжения на основе системы TN-S, обеспечивающей высокий уровень электробезопасности. К сожалению, широкому распространению и внедрению системы TN-S препятствует высокий уровень затрат и ориентированность российской энергетики на четырехпроводные схемы трехфазного электроснабжения.

Система TN-C-S

Система заземления TN-C-S

С целью удешевления оптимальной по безопасности, но финансово емкой системы TN-S с разделенными нулевыми проводниками N и PE, было создано решение, позволяющее использовать ее преимущества с меньшим бюджетом, незначительно превышающим расходы на энергоснабжение по системе TN-C. Суть данного способа подключения состоит в том, что с подстанции осуществляется подача электричества с использованием комбинированного нуля «PEN», подключенного к глухозаземленной нейтрали. Который при входе в здание разветвляется на «PE» - ноль защитный, и еще один проводник, исполняющий на стороне потребителя функцию рабочего ноля «N».

Данная система имеет существенный недостаток — в случае повреждения или отгорания провода PEN на участке подстанция — здание, на проводнике PE, а, следовательно, и всех связанных с ним корпусных деталях электроприборов, появится опасное напряжение. Поэтому при использовании системы TN-C-S, которая достаточно распространена, нормативные документы требуют обеспечения специальных мер защиты проводника PEN от повреждения.

Система заземления TT

Система заземления TT

При подаче электроэнергии по традиционной для сельской и загородной местности воздушной линии, в случае использования здесь небезопасной системы TN-C-S трудно обеспечить надлежащую защиту проводника комбинированной земли PEN. Здесь все чаще используется система TT, которая предполагает «глухое» заземление нейтрали источника, и передачу трехфазного напряжения по четырем проводам. Четвертый является функциональным нолем «N». На стороне потребителя выполняется местный, как правило, модульно-штыревой заземлитель, к которому подключаются все проводники защитной земли PE, связанные с корпусными деталями.

Совсем недавно разрешенная к использованию на территории РФ, данная система быстро распространилась в российской глубинке для энергоснабжения частных домовладений. В городской местности TT часто используется при электрификации точек временной торговли и оказания услуг. При таком способе устройства заземления обязательным условием является наличие приборов защитного отключения, а также осуществление технических мер грозозащиты.

 

2. Системы с изолированной нейтралью

Во всех описанных выше системах нейтраль связана с землей, что делает их достаточно надежными, но не лишенными ряда существенных недостатков. Намного более совершенными и безопасными являются системы, в которых используется абсолютно не связанная с землей изолированная нейтраль, либо заземленная при помощи специальных приборов и устройств с большим сопротивлением. Например, как в системе IT. Такие способы подключения часто используются в медицинских учреждениях для электропитания оборудования жизнеобеспечения, на предприятиях нефтепереработки и энергетики, научных лабораториях с особо чувствительными приборами, и других ответственных объектах.

Система IT

Система заземления IT

Классическая система, основным признаком которой является изолированная нейтраль источника – «I», а также наличие на стороне потребителя контура защитного заземления – «Т». Напряжение от источника к потребителю передается по минимально возможному количеству проводов, а все токопроводящие детали корпусов оборудования потребителя должны быть надежно подключены к заземлителю. Нулевой функциональный проводник N на участке источник – потребитель в архитектуре системы IT отсутствует.

 

Надежное заземление — гарантия безопасности

Все существующие системы устройства заземления предназначены для обеспечения надежного и безопасного функционирования электрических приборов и оборудования, подключенных на стороне потребителя, а также исключения случаев поражения электрическим током людей, использующих это оборудование. При проектировании и устройстве систем энергоснабжения, необъемлемыми элементами которых является как функциональное, так и защитное заземление, должна быть уменьшена до минимума возможность появления на токопроводящих корпусах бытовых приборов и промышленного оборудования напряжения, опасного для жизни и здоровья людей.

Система заземления должна либо снять опасный потенциал с поверхности предмета, либо обеспечить срабатывание соответствующих защитных устройств с минимальным запаздыванием. В каждом таком случае ценой технического совершенства, или наоборот, недостаточного совершенства используемой системы заземления, может быть самое ценное - жизнь человека.

 


Смотрите также:


Смотрите также:

Электрическое заземление - методы и типы заземления

Электрическое заземление - компоненты, методы и типы заземления - Установка электрического заземления

Электрическое заземление, заземление, методы заземления, типы заземления, компоненты заземления и его характеристики Что касается электрического заземления для электрических установок.

Что такое электрическое заземление?

Для соединения металлических (проводящих) частей электрического прибора или установок с землей (землей) называется Заземление или Заземление .

Другими словами, соединение металлических частей электрических машин и устройств с пластиной заземления или заземляющим электродом (который находится во влажной земле) через толстый проводящий провод (который имеет очень низкое сопротивление) в целях безопасности известен как Заземление .

«Заземление» или «заземление», скорее, означает подключение части электрического оборудования, такой как металлическое покрытие, клемма заземления соединительных кабелей, опорные провода, которые не проводят ток на землю.Заземление можно назвать соединением нейтральной точки системы электроснабжения с землей, чтобы избежать или минимизировать опасность во время разряда электрической энергии.

Полезно знать

Различия между заземлением, заземлением и соединением

Позвольте мне устранить путаницу между заземлением, заземлением и соединением.

Заземление и Заземление - это те же термины, которые используются для заземления. Заземление - это обычно слово , используемое для заземления в стандартах Северной Америки , таких как IEEE, NEC, ANSI и UL и т. Д., В то время как Заземление используется в европейских стандартах , странах Содружества и Великобритании, таких как IS и IEC и т. Д.

Слово Соединение используется для соединения двух проводов (а также проводов, труб или приборов вместе. Соединение известно как соединение металлических частей различных машин, которые, как считается, не пропускают электрический ток во время нормальной работы. машин, чтобы вывести их на одинаковый уровень электрического потенциала.

Почему важно заземление?

Основная цель заземления состоит в том, чтобы избежать или минимизировать опасность поражения электрическим током, пожара из-за утечки тока на землю по нежелательному пути и гарантировать, что потенциал токоведущего проводника не поднимется относительно земли, чем это предусмотрено. изоляция.

Когда металлическая часть электроприборов (части, которые могут проводить или пропускать электрический ток) вступает в контакт с токоведущим проводом, возможно, из-за неисправности установки или повреждения изоляции кабеля, металл заряжается, и на нем накапливается статический заряд. это .Если человек прикоснется к такому заряженному металлу , получится сильный шок.

Чтобы избежать таких случаев, системы электропитания и части приборов должны быть заземлены, чтобы переносить заряд непосредственно на землю. Вот почему нам необходимо электрическое заземление или заземление в электрических установках.

Ниже приведены основные потребности заземления.

  • Для защиты жизни людей, а также обеспечения безопасности электрических устройств и приборов от тока утечки.
  • Для поддержания постоянного напряжения в исправной фазе (при отказе какой-либо одной фазы).
  • Для защиты электрических систем и зданий от освещения.
  • Для выполнения функций обратного проводника в системе электрической тяги и связи.
  • Во избежание риска возгорания в электрических установках.
Различные термины, используемые в электрическом заземлении
  • Земля: Надлежащее соединение между электрическими установочными системами через проводник с заглубленной пластиной в земле известно как Земля.
  • Заземление: Когда электрическое устройство, прибор или системы проводки соединены с землей через заземляющий электрод, это называется заземленным устройством или просто «заземленным».
  • С твердым заземлением: Когда электрическое устройство, прибор или электрическая установка подключаются к заземляющему электроду без предохранителя, прерывателя цепи или сопротивления / сопротивления, это называется «глухозаземленным».
  • Заземляющий электрод: Когда проводник (или токопроводящая пластина) закопан в землю для системы электрического заземления.Известно, что это электрод земли. Заземляющие электроды бывают различной формы, например, токопроводящая пластина, проводящий стержень, металлическая водопроводная труба или любой другой проводник с низким сопротивлением.
  • Провод заземления : Провод заземления или токопроводящая полоса, соединяющая электрод заземления и электрическую систему и устройства, называемые проводом заземления.
  • Заземляющий проводник: Проводник, который подключается между различными электрическими устройствами и приборами, такими как распределительный щит, различные вилки и приборы и т. Д.Другими словами, провод между заземляющим проводом и электрическим устройством или прибором называется проводником заземления. Он может иметь форму металлической трубы (полностью или частично), металлической оболочки кабеля или гибкого провода.
  • Дополнительный основной заземляющий провод : Провод, подключенный между распределительным щитом и распределительным щитом, т.е. этот провод относится к вспомогательным основным цепям.
  • Сопротивление заземления: Это полное сопротивление между электродом заземления и землей в Ом (Ом).Сопротивление заземления - это алгебраическая сумма сопротивлений проводника заземления, провода заземления, заземляющего электрода и земли.
Точки для заземления

Заземление все равно не выполняется. Согласно правилам IE и нормам IEE (Института инженеров-электриков),

  • Штырь заземления 3-контактных розеток осветительных вилок и 4-контактных вилок питания должен быть надежно и постоянно заземлен.
  • Все металлические корпуса или металлические покрытия, содержащие или защищающие любые линии электропитания или устройства, такие как трубы GI и кабелепроводы, содержащие кабели VIR или ПВХ, выключатели в железной оболочке, распределительные щиты с предохранителями и т. Д., Должны быть заземлены (заземлены).
  • Рама каждого генератора, стационарных двигателей и металлических частей всех трансформаторов, используемых для управления энергией, должна быть заземлена двумя отдельными, но разными соединениями с землей.
  • В трехпроводной системе постоянного тока средние проводники должны быть заземлены на электростанции.
  • Стойки, предназначенные для воздушных линий, должны быть заземлены путем подсоединения хотя бы одной жилы к заземляющим проводам.

Связанное сообщение: Тестирование электрических и электронных компонентов и устройств с помощью мультиметра

Компоненты системы заземления

Полная система электрического заземления состоит из следующих основных компонентов.

  • Провод заземления
  • Провод заземления
  • Электрод заземления
Компоненты системы электрического заземления
Этот провод заземления
или провод заземления 9000 9000 система заземления, которая соединяет все металлические части электроустановки, например кабелепровод, каналы, коробки, металлические корпуса переключателей, распределительных щитов, переключателей, предохранителей, регулирующие и управляющие устройства, металлические части электрических машин, такие как двигатели, генераторы, трансформаторы и металлический каркас, на котором установлены электрические устройства и компоненты. как заземляющий провод или провод заземления, как показано на рис.

Сопротивление заземляющего проводника очень низкое. Согласно правилам IEEE, сопротивление между клеммой заземления потребителя и проводом непрерывности заземления (на конце) не должно быть больше 1 Ом. Проще говоря, сопротивление заземляющего провода должно быть меньше 1 Ом .

Размер заземляющего проводника или провода заземления зависит от размера кабеля , используемого в электрической цепи .

Размер заземляющего проводника

Площадь поперечного сечения непрерывного заземляющего проводника не должна быть меньше половины площади поперечного сечения самого толстого провода, используемого в установке электропроводки .

Обычно размер неизолированного медного провода, используемого в качестве проводника заземления, составляет 3SWG. Но имейте в виду, что не используйте менее 14SWG в качестве заземляющего провода. Медная полоса также может использоваться в качестве заземляющего проводника вместо неизолированного медного провода, но не используйте ее, пока производитель не порекомендует ее.

Провод заземления или заземляющее соединение

Провод, соединяющий провод заземления и заземляющий электрод или пластину заземления, называется заземляющим стыком или «заземляющим проводом».Точка, где встречаются провод заземления и заземляющий электрод, называется «точкой соединения», как показано на рисунке выше.

Заземляющий провод - это последняя часть системы заземления, которая подключается к заземляющему электроду (который находится под землей) через точку заземления.

В заземляющем проводе должно быть минимальное количество стыков, а также они должны быть меньше по размеру и прямые по направлению.

Как правило, медный провод можно использовать в качестве заземляющего провода, но медная полоса также используется для установки на высоких площадях и может выдерживать высокий ток короткого замыкания из-за большей площади, чем медный провод.

Жестко вытянутый неизолированный медный провод также используется в качестве заземляющего провода. В этом методе все заземляющие проводники подключаются к общим (одной или нескольким) точкам подключения, а затем заземляющий провод используется для подключения заземляющего электрода (пластины заземления) к точке подключения.

Для увеличения коэффициента безопасности установки в качестве заземляющего провода используются два медных провода для соединения металлического корпуса устройства с заземляющим электродом или пластиной заземления. Т.е. если мы используем два заземляющих электрода или заземляющие пластины, то будет четыре заземляющих провода.Не следует учитывать, что два заземляющих провода используются как параллельные пути для протекания токов повреждения, но оба пути должны работать должным образом, чтобы пропускать ток повреждения, поскольку это важно для большей безопасности.

Размер провода заземления

Размер или площадь провода заземления не должны быть меньше половины самого толстого провода, используемого в установке.

Наибольший размер провода заземления - 3SWG , минимальный - не менее 8SWG .Если используется провод 37 / .083 или ток нагрузки составляет 200A от напряжения питания, то рекомендуется использовать медную ленту вместо двойного заземляющего провода. Способы подключения заземляющего провода показаны на рис.

Примечание: мы опубликуем дополнительную статью о размере Земной плиты с простыми вычислениями ... Оставайтесь на связи.

Электрод заземления или заземляющая пластина

Металлический электрод или пластина, закапываемая в землю (под землей) и являющаяся последней частью системы электрического заземления.Проще говоря, последняя подземная металлическая (пластинчатая) часть системы заземления, которая связана с заземляющим проводом, называется заземляющей пластиной или заземляющим электродом.

В качестве заземляющего электрода можно использовать металлическую пластину, трубу или стержень, который имеет очень низкое сопротивление и безопасно переносит ток короткого замыкания на землю.

Размер заземляющего электрода

В качестве заземляющего электрода можно использовать медь и железо.

Размер заземляющего электрода (в случае меди)

2 × 2 (два фута шириной и длиной) и толщиной 1/8 дюйма.. Т.е. 2 ’x 2’ x 1/8 ″ . ( 600x600x300 мм )

В случае железа

2 ′ x2 ′ x ¼ ” = 600x600x6 мм

Рекомендуется закапывать заземляющий электрод во влажную землю. Если это невозможно, залейте воду в трубу GI (оцинкованное железо), чтобы обеспечить влажность.

В системе заземления установите заземляющий электрод в вертикальное положение (под землей), как показано на рис. Кроме того, нанесите слой порошкообразного угля и извести толщиной 1 фут (около 30 см) вокруг пластины заземления (не путайте с электродом заземления и пластиной заземления, поскольку они оба являются одним и тем же).

Это действие позволяет увеличить размер заземляющего электрода, что обеспечивает лучшую целостность цепи в земле (система заземления), а также помогает поддерживать влажность вокруг пластины заземления.

P.S: Мы опубликуем пример расчета размеров заземляющего электрода… Оставайтесь на связи.

Полезно знать:

Не используйте кокс (после сжигания угля в печи для выделения всех газов и других компонентов оставшиеся 88% углерода называют коксом) или каменный уголь вместо древесного угля (древесный уголь), потому что это вызывает коррозию пластины заземления.

Т.к. уровень воды в разных районах разный; поэтому глубина установки заземляющего электрода также различается в разных областях. Но глубина для установки заземляющего электрода не должна быть меньше 10 футов (3 метра) и должна быть ниже 1 фут ( 304,8 мм ) от постоянного уровня воды.

Двигатели , Генератор , Трансформаторы и т. Д. Должны быть подключены к заземляющему электроду в двух разных местах.

Размер заземляющей пластины или электрода заземления для небольшой установки

При небольшой установке используйте металлический стержень (диаметр = 25 мм (1 дюйм) и длина = 2 м (6 футов) вместо пластины заземления для системы заземления. Металлическая труба должна быть На 2 метра ниже поверхности земли. Для поддержания влажности поместите 25 мм (1 дюйм) угольно-известковую смесь вокруг пластины заземления.

Для эффективности и удобства вы можете использовать медные стержни от 12,5 мм (0,5 дюйма) до 25 мм. (1 дюйм) в диаметре и 4 м (12 футов) в длину.Обсудим способ установки стержневого заземления.

Методы и типы электрического заземления

Заземление можно выполнить разными способами. Ниже описаны различные методы, применяемые для заземления (внутри дома или на заводе и другом подключенном электрическом оборудовании и машинах).

Пластинчатое заземление:

В системе пластинчатого заземления пластина из меди с размерами 60 см x 60 см x 3,18 мм (т.е. 2 фута x 2 фута x 1/8 дюйма ) или оцинкованного железа (GI) размером 60 см x 60 см x 6,35 мм (2 фута x 2 фута x дюйма) закапывают вертикально в землю (земляная яма), высота которой не должна быть меньше 3 м. (10 футов) от уровня земли.

Для правильной системы заземления выполните шаги, указанные выше в (Введение в заземляющую пластину), чтобы поддерживать влажность вокруг заземляющего электрода или пластины заземления.

Заземление трубы:

Гальванизированная сталь и перфорированная труба утвержденной длины и диаметра укладываются вертикально во влажную почву в такой системе заземления.Это самая распространенная система заземления.

Размер используемой трубы зависит от силы тока и типа почвы. Размер трубы обычно составляет 40 мм (1,5 дюйма) в диаметре и 2,75 м (9 футов) в длину для обычной почвы или больше для сухой и каменистой почвы. Влажность почвы будет определять длину трубы, которую предстоит заглубить, но обычно она должна составлять 4,75 м (15,5 футов).

Стержневое заземление

это тот же метод, что и заземление труб.Медный стержень диаметром 12,5 мм (1/2 дюйма) или 16 мм (0,6 дюйма) из оцинкованной стали или полый участок 25 мм (1 дюйм) трубы GI длиной более 2,5 м (8,2 фута) закапывают в землю вертикально вручную или с помощью пневмомолота. Длина электродов, встроенных в почву, снижает сопротивление земли до желаемого значения.

Система заземления с медными стержневыми электродами
Заземление через Waterman

В этом методе заземления трубы водовода (гальванизированные GI) используются для заземления.Обязательно проверьте сопротивление труб GI и используйте зажимы заземления, чтобы минимизировать сопротивление для правильного заземления.

Если в качестве заземляющего провода используется многожильный провод, очистите концы жил провода и убедитесь, что он находится в прямом и параллельном положении, которое затем можно плотно подсоединить к трубе гидросистемы.

Заземление из ленты или проволоки:

При этом методе заземления зачищайте электроды сечением не менее 25 мм x 1.6 мм (1 дюйм x 0,06 дюйма) закапывают в горизонтальные траншеи минимальной глубиной 0,5 м. Если используется медь с поперечным сечением 25 мм x 4 мм (1 дюйм x 0,15 дюйма) и размером 3,0 мм, 2 , если это оцинкованное железо или сталь.

Если используются круглые проводники, их поперечное сечение не должно быть слишком маленьким, скажем, менее 6,0 мм. 2 , если это оцинкованное железо или сталь. Длина проводника, закопанного в землю, обеспечит достаточное сопротивление заземления, и эта длина не должна быть меньше 15 м.

Общий способ установки электрического заземления (шаг за шагом)

Обычный метод заземления электрического оборудования, устройств и приборов следующий:

  1. Прежде всего, выкопайте яму 5x5 футов (1,5 × 1,5 м) около 20-30 футов (6-9 метров) в земле. (Обратите внимание, что глубина и ширина зависят от характера и структуры грунта).
  2. Закопайте подходящую медную пластину (обычно 2 x 2 x 1/8 дюйма (600 x 600 x 300 мм) в этой яме в вертикальном положении.
  3. Надежный заземляющий провод через гайки с двух разных мест на пластине заземления.
  4. Используйте два провода заземления с каждой пластиной заземления (в случае двух пластин заземления) и закрепите их.
  5. Для защиты стыков от коррозии нанесите смазку вокруг них.
  6. Соберите все провода в металлическую трубу от заземляющего электрода (ов). Убедитесь, что труба находится на высоте 1 фута (30 см) над поверхностью земли.
  7. Чтобы поддерживать влажность вокруг земной плиты, поместите 30-сантиметровый слой порошкообразного древесного угля (порошкообразного древесного угля) и смеси извести вокруг земной плиты вокруг земной плиты.
  8. Используйте болты с гайкой и гайкой, чтобы плотно подсоединить провода к опорным плитам машин. Каждая машина должна быть заземлена в двух разных местах. Минимальное расстояние между двумя заземляющими электродами должно составлять 10 футов (3 м).
  9. Провод заземления, который соединяется с корпусом и металлическими частями всей установки, должен быть плотно подключен к заземляющему проводу. Обязательно используйте непрерывность, используя тест на непрерывность.
  10. Наконец (но не в последнюю очередь) проверьте всю систему заземления с помощью тестера заземления.Если все идет по планировке, то яму засыпьте землей. Максимально допустимое сопротивление заземления составляет 1 Ом. Если оно больше 1 Ом, увеличьте размер (не длину) заземляющего провода и проводов заземления. Держите внешние концы труб открытыми и время от времени поливайте воду, чтобы поддерживать влажность вокруг заземляющего электрода, что важно для лучшей системы заземления.
Спецификация SI для заземления

Ниже приведены различные спецификации относительно заземления, рекомендованные индийскими стандартами.Вот несколько;

  • Заземляющий электрод нельзя располагать (устанавливать) близко к зданию, система заземления которого заземляется, на расстоянии не менее 1,5 м.
  • Сопротивление заземления должно быть достаточно низким, чтобы протекание тока было достаточным для срабатывания защитных реле или срабатывания предохранителей. Это значение непостоянно, так как оно меняется в зависимости от погоды, потому что оно зависит от влажности (но не должно быть меньше 1 Ом).
  • Заземляющий провод и заземляющий электрод будут из одного материала.
  • Заземляющий электрод всегда следует размещать в вертикальном положении внутри земли или ямы, чтобы он мог контактировать со всеми различными слоями земли.

Связанные сообщения:

Опасности незаземления системы питания

Как подчеркивалось ранее, заземление предоставляется в порядке

  • Во избежание поражения электрическим током
  • Во избежание риска возгорания в результате тока утечки на землю через нежелательный путь и
  • Чтобы гарантировать, что ни один из проводников с током не поднимется до потенциала относительно общей массы земли, чем его проектная изоляция.

Однако, если чрезмерный ток не заземлен, приборы будут повреждены без помощи предохранителя. Следует отметить, что на их генерирующих станциях происходит заземление чрезмерного тока, поэтому по заземляющим проводам ток очень мал или отсутствует вообще. Следовательно, это означает, что нет необходимости заземлять какой-либо из проводов (токоведущих, заземляющих и нулевых), содержащихся в ПВХ. Заземлить токоведущий провод катастрофически.

Я видел человека, убитого просто потому, что провод под напряжением был отрезан от верхней опоры и упал на землю, пока земля была влажной.Чрезмерный ток заземляется на генерирующих станциях, и если заземление вообще неэффективно из-за короткого замыкания, вам помогут прерыватели замыкания на землю. Предохранитель помогает только тогда, когда передаваемая мощность превышает номинальную мощность наших приборов, он блокирует ток от достижения наших приборов, сгорая и защищая наши приборы в процессе.

В наших электроприборах, если чрезмерные токи не заземлены, мы испытаем сильный ток. Заземление в электроприборах происходит только тогда, когда возникает проблема, и оно должно спасти нас от опасности.Если в электронной установке металлическая часть электроприбора вступает в прямой контакт с проводом под напряжением, что может быть вызвано, возможно, неисправностью установки или иным образом, металл будет заряжен, и на нем будет накапливаться статический заряд.

Если вы случайно прикоснетесь к металлической части в этот момент, вас поразит удар. Но если металлическая часть прибора заземлена, заряд будет передаваться на землю, а не накапливаться на металлической части прибора. Ток не проходит через заземляющие провода в электроприборах, он протекает только при возникновении проблем и только для направления нежелательного тока на землю, чтобы защитить нас от сильного удара.

Кроме того, если находящийся под напряжением провод случайно (в неисправной системе) касается металлической части машины. Теперь, если человек коснется этой металлической части машины, то через его тело будет протекать ток на землю, следовательно, он получит удар током (удар током), что может привести к серьезным травмам, вплоть до смерти. Вот почему так важно заземление?

Электрическое заземление и заземление… .. Продолжение следует…

Пожалуйста, подпишитесь ниже, если вы хотите получить следующий пост о Заземление / заземление , например:

  • Рассчитайте размер заземляющего проводника, заземления Свинцовые и заземляющие электроды для различных электрических устройств и оборудования, таких как двигатели, трансформаторы, домашняя электропроводка и т. Д., Путем простых расчетов
  • Цепь заземления и ток замыкания на землю
  • Защита системы заземления и дополнительных устройств, используемых в системе заземления / заземления
  • Пункты, которые следует запомнить при обеспечении заземления
  • Важные инструкции по правильной системе заземления
  • Правила электроснабжения относительно заземления
  • Как проверить сопротивление заземления с помощью тестера заземления
  • Как проверить сопротивление контура заземления с помощью амперметра и вольтметра
  • Многократное защитное заземление
  • И многое другое….

Похожие сообщения:

.

Какие бывают типы наземных солнечных стеллажей?

Одна из самых больших областей инноваций в солнечной энергии связана с монтажной системой. Наверное, самый конкурентный рынок продуктов для солнечных батарей (наш ежегодный список лучших продуктов для монтажа солнечных батарей составлен из нескольких стопок, и это все еще просто капля в море), системы крепления являются важным элементом солнечных батарей - они крепят солнечные панели к крыше или земле. Здесь мы рассмотрим основные категории наземных солнечных систем, чтобы помочь новым установщикам разобраться в процессах установки.Мы исследуем различные кровельные системы (в том числе безрельсовые и балластные) в другой статье, которую необходимо прочитать.

Традиционные наземные системы

Наземные солнечные системы, по сути, все работают одинаково - системы прикреплены к земле и удерживают большое количество штабелированных панелей, часто двух, а иногда и трех или четырех панелей в высоту. Две направляющие обычно поддерживают каждую панель, независимо от того, ориентирована ли она в альбомной или портретной ориентации. Крепление к земле - сложная часть этих установок, так как существует много различных типов фундаментов.

Если почва очищена от мусора, стальные балки вбиваются в землю и к балкам прикрепляется стеллажная система. Если грунтовые условия не подходят для плавно забиваемых балок, можно использовать анкерные системы - винтовые сваи, заземляющие винты. Для их установки может потребоваться больше времени, поскольку они должны проходить через валуны и другой крупный мусор.

Наземные системы не всегда должны проникать в землю. Закрытые свалки и другие заброшенные поля идеально подходят для солнечных батарей, так как они являются недостаточно используемыми земельными участками, но их темпераментные грунтовые условия не могут быть нарушены.Массивы можно балластировать на земле так же, как на плоских крышах. Бетонные блоки удерживают систему на месте, и если грунтовые условия могут выдержать вес автобетоносмесителя, монолитные блоки могут быть более простым вариантом для установщиков.

Системы слежения

Для повышения выработки энергии разработчики и установщики обращаются к системам слежения. Эти моторизованные наземные крепления отслеживают солнце в течение дня, гарантируя, что панели всегда обращены к солнцу.Панели прикрепляются к таким же стеллажам, что и традиционные наземные крепления, обычно привинчиваются или фиксируются на месте, но существуют различные типы систем слежения.

Существуют две основные классификации систем слежения: одноосные и двухосные. Одноосные системы слежения охватывают панели длинными рядами, следуя за солнцем с востока на запад. Двухосные системы слежения отделяют столы от панелей и следуют за солнцем по более круговой траектории для наилучшего выхода энергии.

Системы слежения

имеют два моторных различия.Централизованные трекеры перемещают множество рядов панелей с помощью одного двигателя. Распределенные трекеры используют один двигатель для каждой строки или таблицы панелей. Централизованные системы используют меньше двигателей, а распределенные - много.

Навесы и навесы

Навесы для автомобилей и навесы на солнечных батареях можно рассматривать как действительно очень высокие наземные крепления. Они очень распространены в коммерческих условиях, особенно в школах и бизнес-кампусах. Железобетонный фундамент удерживает большие стальные балки, которые поддерживают солнечные панели над головой.Навесы для автомобилей могут быть спроектированы так, чтобы покрывать один ряд парковочных мест, занимать два ряда или быть настолько большими, насколько требуется проекту. Многие навесы для автомобилей могут быть оборудованы станциями зарядки электромобилей в качестве дополнительного бонуса для автомобилей, укрытых под ними.

Плавучие солнечные системы

Флотовольтаика - солнечная батарея, которая плавает на воде - действительно получила распространение в Азии и некоторых частях Европы и начинает проникать в Соединенные Штаты. Многие резервуары и водоочистные сооружения могут получить выгоду от сдачи своих водных поверхностей в аренду разработчикам солнечных батарей.Хотя плавающие солнечные батареи на самом деле не прикреплены к земле, они все же заимствуют характеристики наземных солнечных батарей.

Плавающие системы сделаны из пластика, которые соединяются в мат. Каждый отдельный поплавок имеет наклонную конструкцию, поэтому панели располагаются в той же степени, что и системы на плоской крыше. Плавучие системы часто можно собрать на суше, а затем выбросить на воду по мере добавления дополнительных панелей. Система крепится либо к береговым креплениям, либо к плавучим якорям.

Просмотрите базу данных Solar Power World о стеллажных и монтажных моделях солнечных батарей.

.

Единая система классификации почв (USCS)

Единая система классификации почв принята ASTM D-2487-98 и IS: 1498-1970 для классификации и идентификации грунтов общего инженерного назначения.

Единая система классификации почв

Почвы в целом подразделяются на три категории:

Крупнозернистые почвы: В этих почвах 50% или более всего материала по массе имеют размер сита IS более 75 микрон.

Мелкозернистые почвы: В этих почвах 50% или более от общего веса материала имеют размер сита IS меньше 75 микрон.

Высокоорганические почвы и прочие различные почвенные материалы:

Эти почвы содержат большой процент волокнистого органического вещества, такого как торф, и частицы разложившейся растительности. Кроме того, в этот раздел также входят определенные почвы, содержащие в достаточном количестве раковины, шлак и другие непочвенные материалы.

1. Грунт крупнозернистый

Крупнозернистые почвы делятся на две части:

a) Гравий (G): В этих почвах более 50% крупной фракции (+75 микрон) имеет размер сита более 4,75 мм. Этот подкласс включает гравий и гравийный грунт и обозначен символом G.

.

b) Пески (S): в этих почвах более 50% крупной фракции меньше 4,75 мм сита IS. В этот подраздел входят пески и песчаные почвы.

Каждый из вышеперечисленных подразделов делится на четыре группы в зависимости от классификации и включения других материалов.

  1. W: Хорошо отсортировано
  2. C: Глиняное связующее
  3. P: Плохо отсортировано
  4. M: Содержит мелкие материалы, не отнесенные к другим группам.

Эти символы используются в комбинации для обозначения типа зернистых почв. Например, GC означает глинистый гравий.

2. Мелкозернистые почвы

Мелкозернистые почвы подразделяются на три подразделения:

a) Неорганические илы и очень мелкие пески: M

б) Неорганические глины: C

c) илы, глины и органические вещества: O.

Мелкозернистые почвы далее делятся на следующие группы на основе следующих произвольно выбранных значений предела жидкости, который является хорошим показателем сжимаемости:

i) Илы и глины низкой сжимаемости:

Имеющий лимит жидкости менее 35 и обозначенный символом L.

ii) Илы и глины средней сжимаемости:

Имеющий предел жидкости больше 35 и меньше 50 и обозначен символом I.

iii) Илы и глины высокой сжимаемости:

Имеющий предел жидкости больше 50 и обозначенный символом H.

Комбинация этих символов указывает на тип мелкозернистой почвы. Например, ML означает неорганический ил с низкой или средней сжимаемостью.

Единая система классификации почв и таблица символов:

Рис: Единая система классификации почв для крупнозернистых грунтов Рис: Единая система классификации почв для мелкозернистых грунтов Рис: Диаграмма пластичности почв по Единой системе классификации почв .

Классификация климатов Коппена | Описание, карта и диаграмма

Классификация климата Кеппена , широко используемая, основанная на растительности, эмпирическая система классификации климата, разработанная немецким ботаником-климатологом Владимиром Кеппеном. Его целью было разработать формулы, которые определяли бы климатические границы таким образом, чтобы они соответствовали зонам растительности (биомам), которые были нанесены на карту впервые при его жизни. Кеппен опубликовал свою первую схему в 1900 году и исправленную версию в 1918 году.Он продолжал пересматривать свою систему классификации до самой своей смерти в 1940 году. Другие климатологи модифицировали части процедуры Кеппена на основе своего опыта в различных частях мира.

Карта классификации климата Кеппена Основные климатические типы основаны на моделях среднего количества осадков, средней температуры и естественной растительности. На этой карте показано мировое распределение типов климата на основе классификации, первоначально изобретенной Владимиром Кеппеном в 1900 году. M.C. Пил, Б. Финлейсон, Т.А. McMahon (2007), обновленная карта мира по классификации климата Кеппена-Гейгера, Hydrology and Earth System Sciences, 11, 1633-1644.

Популярные вопросы

Что такое климатическая классификация?

Классификация климата - это инструмент, используемый для распознавания, уточнения и упрощения климатических сходств и различий между географическими регионами, чтобы помочь нам лучше понять климат Земли. Схемы классификации основаны на данных об окружающей среде, таких как температура, количество осадков и снегопадов, для выявления закономерностей и связей между климатическими процессами.

Существуют ли разные климатические классификации?

Климатические классификации делятся на две категории: генетические и эмпирические. Генетические классификации группируют климат по их причинам, уделяя особое внимание тому, как температура соотносится с расстоянием от Северного полюса, Южного полюса или экватора, континентальностью и факторами, влияющими на океан, воздействием гор или комбинацией нескольких факторов. Генетические классификации носят качественный характер, а климатические регионы составлены субъективно.Напротив, эмпирические классификации, такие как классификация климата Кеппена, группируют каждый тип климата в соответствии с одним или несколькими аспектами климатической системы, такими как естественная растительность.

Кем был Владимир Кеппен?

Владимир Кеппен (1846–1940) был немецким метеорологом и климатологом, наиболее известным своим описанием и составлением карт климатических регионов мира. Он сыграл важную роль в развитии климатологии и метеорологии на протяжении более 70 лет. Практические и теоретические достижения Кеппена оказали глубокое влияние на развитие науки об атмосфере.Его величайшее достижение произошло в 1900 году, когда он представил свою математическую систему климатической классификации. Каждому из пяти основных типов климата было присвоено математическое значение в зависимости от температуры и количества осадков. С тех пор многие системы, введенные другими учеными, были основаны на работе Кеппена.

Какие пять основных типов климата Кеппен?

  • Классификация Кеппена подразделяет климат суши на пять основных типов, представленных заглавными буквами A, B, C, D и E.
  • Климат типа B определяется по сухости; все остальные определяются температурой.
  • Климат типа А основан на сезонности выпадающих в них осадков.
  • Климат типа E разделен на тундровый (ET) и снежно-ледовый (EF).
  • Климатам C и D в средних широтах дается вторая буква f (без засушливого сезона), w (засушливая зима) или s (засуха летом) и третьим символом a, b, c или d (последний подкласс существует только для климата D), что указывает на летнее тепло или зимний холод.
  • Климат H (высокогорье), который Кеппен не использовал, иногда добавляется к другим классификациям для учета высот выше 1500 метров (около 4900 футов).

Классификация Кеппена основана на подразделении земного климата на пять основных типов, которые представлены заглавными буквами A, B, C, D и E. Каждый из этих типов климата, за исключением B, определяется температурными критериями. Тип B обозначает климат, в котором контролирующим фактором растительности является сухость (а не холод).Засушливость - это не только вопрос количества осадков, но и определяется соотношением между количеством осадков, поступающих в почву, в которой произрастают растения, и потерями на испарение. Поскольку испарение трудно оценить и оно не является обычным измерением на метеорологических станциях, Кеппен был вынужден заменить формулу, которая определяет засушливость с точки зрения индекса температуры-осадков (то есть предполагается, что испарение контролируется температурой). Сухой климат делится на подтипы засушливого (BW) и полузасушливого (BS), и каждый может быть дополнительно дифференцирован путем добавления третьего кода: h для теплого и k для холодного.

Как отмечалось выше, температура определяет четыре других основных типа климата. Они подразделяются на дополнительные буквы, которые снова используются для обозначения различных подтипов. Климат типа А (самый теплый) различается в зависимости от сезонности осадков: Af (без засушливого сезона), Am (короткий сухой сезон) или Aw (зимний сухой сезон). Климат типа E (самый холодный) условно разделяют на тундровый (ET) и снежно-ледовый (EF). Климатам C и D на средних широтах дается вторая буква f (без засушливого сезона), w (засушливая зима) или s (засуха летом) и третий символ (a, b, c или d [последний подкласс существует только для климата D]), что указывает на тепло летом или на холод зимой.Хотя классификация Кеппена не учитывала уникальность климатических регионов высокогорья, категория климата высокогорья или климат H иногда добавляется к системам классификации климата для учета высот выше 1500 метров (около 4900 футов).

Классификация основных климатических типов по модифицированной схеме Кеппена-Гейгера
буквенное обозначение
1-й 2-я 3-й критерий
1 В приведенных выше формулах r - это среднегодовое количество осадков (мм), а t - среднегодовая температура (° C).Все остальные температуры являются среднемесячными (° C), а все остальные количества осадков являются среднемесячными суммами (мм).
2 Любой климат, удовлетворяющий критериям обозначения типа B, классифицируется как таковой, независимо от других его характеристик.
3 Летняя половина года определяется как апрель – сентябрь для Северного полушария и октябрь – март для Южного полушария.
4 Большинство современных схем климата учитывают роль высоты.Горная зона была взята из G.T. Trewartha, Введение в климат, 4-е изд. (1968).
Источники данных: адаптировано из Howard J. Critchfield, General Climatology, 4 ed. (1983) и М. Пил, Б. Финлейсон, Т.А. МакМахон, «Обновленная карта мира по классификации климата Кеппена-Гейгера», Гидрология и науки о земных системах, 11: 1633–44 (2007).
А температура самого холодного месяца 18 ° C или выше
f осадков в самый засушливый месяц не менее 60 мм
м количество осадков в самый засушливый месяц менее 60 мм, но не менее 100 - (r / 25) 1
Вт осадков в самый засушливый месяц менее 60 и менее 100 мм - (r / 25)
B 2 70% или более годовых осадков выпадает в летнюю половину года и r менее 20t + 280, или 70% или более годовых осадков выпадает в зимнюю половину года и r менее 20t, или ни одна половина Год имеет 70% или более годовых осадков и r менее 20т + 140 3
Вт r меньше половины верхнего предела для классификации как тип B (см. Выше)
S r меньше верхнего предела для классификации как тип B, но составляет более половины этого количества
ч t не менее 18 ° C
к т менее 18 ° C
С температура самого теплого месяца выше или равна 10 ° C, а температура самого холодного месяца ниже 18 ° C, но выше –3 ° C
с Осадки в самый засушливый месяц летней половины года составляют менее 30 мм и менее одной трети самого влажного месяца зимней половины
Вт осадков в самый засушливый месяц зимней половины года Менее одной десятой части количества осадков в самый влажный месяц летней половины
f осадков более равномерно распределены в течение года; критерии ни s, ни w не выполнены
a температура самого теплого месяца 22 ° С и выше
б температура каждого из четырех самых теплых месяцев 10 ° C или выше, но самый теплый месяц ниже 22 ° C
c температура от одного до трех месяцев 10 ° C или выше, но самый теплый месяц ниже 22 ° C
D температура самого теплого месяца больше или равна 10 ° C, а температура самого холодного месяца –3 ° C или ниже
с то же, что и для типа C
Вт то же, что и для типа C
f то же, что и для типа C
a то же, что и для типа C
б то же, что и для типа C
c то же, что и для типа C
d температура самого холодного месяца ниже –38 ° C (тогда вместо a, b или c используется обозначение d)
E температура самого теплого месяца менее 10 ° C
т температура самого теплого месяца выше 0 ° C, но ниже 10 ° C
F температура самого теплого месяца 0 ° C или ниже
H 4 температура и характеристики осадков сильно зависят от характеристик прилегающих зон и общей высоты над уровнем моря - высокогорный климат может встречаться на любой широте.

Классификация Кеппена подвергалась критике по многим причинам.Утверждалось, что экстремальные явления, такие как периодическая засуха или необычное похолодание, столь же важны для управления распределением растительности, как и средние условия, на которых основана схема Кеппена. Также было отмечено, что для растительности важны другие факторы, помимо тех, которые используются в классификации, такие как солнечный свет и ветер. Более того, утверждалось, что естественная растительность может лишь медленно реагировать на изменения окружающей среды, так что наблюдаемые сегодня зоны растительности частично адаптированы к прошлому климату.Многие критики обратили внимание на довольно плохое соответствие между зонами Кеппена и наблюдаемым распределением растительности во многих частях мира. Несмотря на эти и другие ограничения, система Кеппена остается самой популярной климатической классификацией, используемой сегодня.

Получите эксклюзивный доступ к контенту нашего 1768 First Edition с подпиской. Подпишитесь сегодня .

Смотрите также