Как сделать контур заземления


советы по проектированию и монтажу

Строительство загородного дома включает в себя множество электротехнических работ. Среди них не последнее место занимает планирование и обустройство системы заземления, которую нельзя игнорировать по причинам безопасности и требованиям ПТЭЭП.

Делать заземление в частном доме своими руками не запрещено, поэтому в этом материале подробно рассмотрим основные этапы проектирования и монтажа контура.

Содержание статьи:

Значение и необходимость заземления

Основу энергообеспечения частного дома составляет электрическая сеть, представляющая опасность для жильцов, если не применить некоторые меры по ее устранению. К таким мерам относится двойная изоляция проводников, выравнивание потенциалов, и дифавтоматов.

Заземление электросети также играет важную роль и предназначено, чтобы отводить появившийся в ненужном месте электроток в грунт.

Технически это выглядит так: все электроустановки в доме соединяются между собой и автоматами защиты, а затем – с землей, чтобы в критической ситуации было куда сбросить лишнее напряжение

Одного забитого в землю куска арматуры или профиля недостаточно. Заземление – это целая система взаимодействующих между собой элементов, связанная с другими системами.

Ее нельзя монтировать, не подобрав подходящие по параметрам детали и не произведя предварительные расчеты.

Для внедрения конструкции в грунт необходимо выбрать небольшой открытый участок земли рядом с домом. Над ним нельзя возводить постройку или гараж, так как периодически будет производиться профилактическое или ремонтное вскрытие грунта

Между городскими многоэтажками и частным жильем существует разница в устройстве заземляющих систем.

В многоквартирных домах шина находится в этажном электрощите, тогда как для частного дома контур заземления зарывают буквально в землю, так как он расположен рядом и не требует больших усилий для монтажа.

Все требования к проектированию и устройству системы заземления изложены в ПТЭЭП 2.7.8. Владелец дома должен знать, что прием в эксплуатацию самостоятельно обустроенной конструкции будет проводить организация-поставщик электроэнергии.

Ее представители раз в полгода обязаны визуально осматривать наземные видимые части системы, а примерно раз в 12 лет производить выемку грунта и поверять состояние подземных элементов.

Выбор системы и составление схемы

Всего существует три системы заземления: ТТ, IT, TN, из них последняя делится еще на три разновидности – TN-S, TN-C, TN-C-S.

В частном домостроении обычно используют схемы систем TN-C-S или ТТ, причем TN-C-S выглядит более привлекательной, так как к ее монтажу предъявляется меньше требований.

Схема системы заземления TN-C-S: 1 – условное обозначение заземлителя источника питания; 2 – токопроводящие части открытого типа. На определенном участке цепи заземляющий проводник соединяется с PEN

Система начинается от главной заземляющей шины, которая установлена или в электрощитке дома, или в шкафу вводного устройства.

Наиболее рациональным считается решение, когда заземление расположено на опоре, перенаправляющей электромагистраль в дом.

Схема электробокса с разделенными проводниками заземления и нейтрали: 1 – электрощит; 2 – нулевой проводник; 3 – заземляющий проводник; 4 – фазовые групповые проводники; 5 – выключатель дифференциального тока; 6 – автоматы; 7 – групповые цепи; 8 – дифференциальный автомат; 9 – прибор учета электроэнергии

Схема системы ТТ, которая кардинально отличается подключением заземляющего проводника. Он не зависит от источника электропитания, действует в автономном режиме

Система ТТ используется гораздо реже. Ею занимаются представители энергоснабжающей организации, а если владелец все же решит сэкономить и самостоятельно произвести монтаж, то заверять документы придут все те же работники Энергоснаба.

Если все же рискнете и выберете схему заземления ТТ для частного дома, то не забудьте про обязательную !

Инструкции по монтажу заземления

Существует два способа сборки и установки подземных заземляющих конструкций. Первый можно выполнить своими силами, хотя придется потрудиться и потратить немало времени, а второй по силам только профессионалам, так как потребуется специальное оборудование и навыки измерения сопротивления.

Вариант 1 — заземляющий провод + заземлитель

Сначала рассмотрим, как самостоятельно сделать заземление в частном доме, не прибегая к платным услугам. Система состоит из двух основных элементов, каждый из которых подбирается в зависимости от условий монтажа.

Заземляющий провод – медный проводник с сечением, равным сечению фазной жилы. Он одним концом подключен к шине, расположенной в электрощите, вторым – к заземлителю, зарытому в грунт. К шине также ведут заземляющие проводники от всех электроустановок в доме.

Провода «земли» легко распознать по цветовой маркировке – желто-зеленой полимерной изоляции. Способ крепления к шине – винтовой, посредством установки наконечников

Заземлитель – это конструкция из стальных элементов, тесно контактирующая с грунтом и служащая для выравнивания потенциалов при появлении напряжения.

При проектировании учитывают параметры сопротивления грунта, вычисляют размеры стержней и рамы, а также глубину залегания.

Удельное сопротивление грунта. Очевидно, что значение УСГ песка, глины или торфа различается. Чем влажнее и плотнее грунт, тем менее объемной будет конструкция заземлителя

Существует универсальная конструкция, для создания которой не нужно производить сложные расчеты.

Для ее изготовления потребуются:

  • три 3-метровых уголка 50*50 мм или стальная труба со стенкой 3 мм и диаметром 16 мм;
  • три 3-метровых уголка 40*40 мм.

Также понадобится , режущий инструмент, кувалда, крепежные материалы, а для земляных работ – лопата и ведро.

Пошаговая инструкция:

  1. Выкапываем траншею от дома до места установки заземлителя. Ее глубина и ширина – около полуметра.
  2. Делаем разметку для вбивания штырей (уголков) в виде равностороннего треугольника со стороной 3 м.
  3. В местах вершин треугольника выкапываем ямки глубиной 50 см.
  4. Соединяем ямки узкими канавками по периметру, чтобы получился треугольник.
  5. Забиваем уголки 50*50 в землю так, чтобы над ее поверхностью остались части длиной около 0,2 м.
  6. Свариваем три уголка 40*40 в форме треугольника.
  7. Привариваем треугольник к уголкам, забитым в землю.

Затем подключаем к конструкции заземляющий проводник: запрессовываем его конец круглым наконечником и с помощью болта подходящего размера прикручиваем к отверстию, высверленному в одном из уголков.

Схема установки заземлителя. Проводник ведет от зарытой треугольной конструкции к дому и заканчивается в электрощите на заземляющей шине

Металлические детали необходимо засыпать грунтом, лучше песком, а место монтажа заземлителя и проводника пометить табличкой, чтобы при строительных или хозяйственных работах не повредить.

Рекомендации по выбору деталей и монтажу заземлителя в грунт:

Галерея изображений

Фото из

Фабричные изделия имеют преимущества перед изготовленными своими руками: поставляются комплектно, не требуют сварки, позволяют получить нужное сопротивление при минимуме земляных работ

Чтобы забить длинные 3-метровые уголки в землю, на первом этапе потребуется стремянка или другое возвышение, с которого можно производить удары электроинструментом или кувалдой

Чтобы максимально сохранить проводимость металлического уголка, элементы конструкции не нужно покрывать защитной антикоррозийной краской или другим похожим составом

Кроме стального уголка 50*50 см можно использовать 6-миллиметровый оцинкованный прут, 10-миллиметровый прут из черного металла или прямоугольный прокат 48 мм²

Лучший вариант заземляющей шины – пластина из электротехнической бронзы с отверстиями для присоединения заземляющих проводников. Она монтируется на стенку электроящика

Заземляющую конструкцию рекомендуется зарывать в грунт как можно ближе к фундаменту дома – примерно на расстоянии в 1 м

Чтобы самодельные металлические элементы легче забивались в грунт, концы уголков необходимо заострить, подрезав пилой. Заводские изделия оснащены остроконечной головкой

Чтобы соединения не окислились и не повысили сопротивление заземлителя, вместо винтов используют сварку, которая гарантирует прочный и длинный шов

Комплектация заводского заземлителя

Стремянка или специально сколоченная подставка

Металлический уголок из оцинкованной стали

Металлопрокат для изготовления заземлителя

Шина заземления в электрощите

Контур заземления около дома

Монтаж заземлителя в грунт

Сварка деталей из черного металла

Для стальных стержней и соединяющей их полосы опасна пищевая соль – она разъедает металл и приводит конструкцию в негодность. Проследите, чтобы это вещество случайно не попало в грунт рядом с заземлителем.

Вариант 2 — модульная штыревая система

Если конструкцию из деталей металлопроката можно сделать своими руками, то заводской штырь необходимо приобрести в магазине.

Его главное преимущество – отсутствие трудоемких земляных и сварочных работ, а недостаток заключается в дополнительных расходах на оплату услуг обслуживающей организации.

Схема монтажа штыревого заземлителя и его устройство. Основные составляющие части – головка, стальной электрод с электрохимическим медным покрытием и муфты, соединяющие фрагменты электрода

Большая глубина объясняется еще и тем, что в указанном диапазоне обычно присутствуют грунтовые воды, резко снижающие сопротивление устройства, а это – необходимое условие для создания заземляющей системы

В самодельной конструкции площадь соприкосновения с грунтом увеличивается за счет использования нескольких уголков. Здесь штырь всего один, поэтому увеличение контакта происходит за счет его длины. Устройство забивают в грунт на глубину 20-40 м.

Земляные работы сводятся к вырыванию одной ямки с размерами 0,5*0,5*0,4 м. Для забивания штыря ударной дрелью пользоваться не рекомендуется, так как нужно исключить вращение головки штыря. Здесь нужен перфоратор со специальной насадкой.

В заводском комплекте вместе со штырем есть зажим для крепления проводника заземления, поэтому процесс монтажа заключается в забивании основного устройства и подключении его к проводу.

Пошаговая инструкция по монтажу штыревого заземлителя. Проводить замеры растекания мультиметром и рассчитывать глубину установки может только специалист – представитель из обслуживающей организации

Существуют нормативы, которых следует придерживаться в процессе монтажа:

  • для 3-фазной сети 380 В – сопротивление не более 2 Ом;
  • для 1-фазной сети 220 В – сопротивление не более 4 Ом.

При самостоятельном монтаже для подстраховки перед проверяющими органами лучше точно вычислить уровень залегания грунтовых вод и убедиться, что заземлитель опустится до этой отметки.

При контакте с грунтовыми водами параметры сопротивления придут в норму.

Выводы и полезное видео по теме

Опыт устройства заземления своими руками:

Практические советы по монтажу заземлителя фабричного изготовления:

Установка системы заземления из нескольких стержней:

Как видите, смонтировать систему заземления можно как собственноручно, так с помощью бригады приглашенных электромонтажников – первый способ дешевый, но более сложный, второй дорогостоящий, но надежный.

Однако главное в грамотном монтаже – это результат, который должен сделать электросеть дома полностью безопасной для его владельцев.

У вас остались вопросы по собственноручному обустройству контура заземления? Задавайте их ниже под статьей – наши эксперты и компетентные посетители сайта постараются вам помочь.

Если вы заметили неточности или ошибки в приведенном выше материале, или хотите дополнить статью полезными сведениям – пишите нам, пожалуйста, в блоке комментариев.

контуров заземления

контуров заземления

[Начало] [ Вверх]

Ground Loops Radio Оборудование

Контуры заземления Транспортные средства

Контуры заземления Аудио Системы

Как заземлить Возникают петли (технические)

Автопарк и Заземление

Примечание: это обсуждение применяется только к основаниям внутри платформы или системы.Оно делает не применяется к кабелям или проводке вне здания, где повреждение светом или другие скачки напряжения вызывают беспокойство.

Проблемы контура заземления обычно возникают, когда соединительные порты заземлены к пунктам, работающим с перепады напряжения. Разница в напряжениях обычно возникает из-за высоких токов. на другом заземленном пути. Проблемные перепады напряжения обычно создаются падение напряжения вдоль Сильноточный провод, заземленный с обоих концов на общую землю.Это может создают разность потенциалов вдоль пути заземления сигнального провода, и это напряжение передается в чувствительную схему.

Нежелательное взаимодействие, которое мы называем «контур заземления», обычно является непреднамеренным в результате плохой техники подключения, плохого планирования порта источника или нагрузки или комбинация всего.


Примечание: "Порт" по определению подключение входа или выхода сигнала, обычно через гнездо, соединитель или терминал полоса. «Порты» - это точка соединения, в которой соединительный провод или кабель входит или выходит Устройство.

Использование шины заземления вдоль стола не вызывает "заземления". петля ». Замена проводов на звезду или прокладка отдельных заземляющих проводов на дальние общая точка, как и стержень, не исправляет контуры заземления. Несколько заземляющих проводов в далекую точку не исправьте контуры заземления или радиопомехи, за исключением случая чистой случайности. Длинные изолированные заземляющие провода от оборудования на столе до общего места вне рабочего стола, например, удочка, не годится наука.

Низкая частота оборудования или контуры заземления постоянного тока вызваны мощностью падение напряжения на кабеле и отсутствие использования одноточечного заземления на одном конце пути.RFI вызваны синфазным RF на антенных кабелях или нарушение целостности экрана. Более короткий и более низкий путь заземления сопротивление между оборудованием в одной точке, тем лучше! Исключение составляет как правило, любой сильноточный источник питания или нагрузка. Источники или нагрузки сильного тока в целом НЕ должен быть привязан к наземная шина более чем в одной точке. Что-то вроде сильноточной мощности Отрицательный провод источника питания должен быть заземлен только со стороны оборудования. В идеале отрицательная шина должна плавать на источнике питания, но должна иметь предохранительный зажим, который это высокий импеданс при нормальных условиях при ограничении отрицательной клеммы поднимаются при неисправностях.

С за исключением сильноточного источника питания с заземленным минусом шасси, который должен быть заземлен непосредственно на сильноточное оборудование, которое оно обслуживает, Самый короткий путь с наименьшим сопротивлением между оборудованием всегда лучше. это обычно требует наличия тяжелой заземляющей шины с низким сопротивлением и короткими гибкими плетеные провода, соединяющие настольное оборудование с этой настольной шиной.

Отрицательный вывод предохранители на оборудовании - тоже вообще плохая идея, но мы видим это повсюду.Из-за плохих инструкций по подключению потребовались предохранители с отрицательным выводом!

Современные автомобили используют микропроцессорную систему для изучения многих аспекты состояния двигателя. Процессор считывает внешние датчики и, используя эти данные, вычисляет время зажигания, топливо форсунка открывает окна, включает насосы и вентиляторы, управляет системой рециркуляции отработавших газов, регулирует двигатель холостой ход и множество других функций. Несколько датчиков сообщают компьютеру множество различных параметров в том числе положение дроссельной заслонки, втекающая в двигатель воздушная масса, охлаждающая жидкость температура, барометрическое давление, содержание кислорода в выхлопных газах, положение коленчатого вала, и другие параметры.Разница между подачей топлива на 15 лошадиных сил или подача топлива на 500 лошадиных сил может быть менее 3 вольт, на некоторых датчики! Десятые доли вольта могут значительно изменить критические параметры двигателя, и изменения датчика в сотых долях вольта могут заметно изменить смесь. количество. Эта чувствительность к относительно небольшим изменениям напряжения датчика является корнем Проблемы с контуром заземления системы управления двигателем. ключ к правильному управлению сложными функциями. читает датчики низкого напряжения с высоким сопротивлением, обычно работающие в диапазоне от нуля до пять вольт, точно.Шум может особенно повлиять на точность чувствительной синхронизации функции.

Повреждение оборудования может произойти в результате проблемы с контуром заземления. Из-за плотного упаковка и миниатюрная конструкция, современная электроника использует небольшие проводники (следы фольги) и компоненты. Контур заземления может расплавить следы фольги, повредить полупроводники или микросхемы или разрушить малые резисторы. Контур заземления может вывести из строя дорогую электронную систему за доли секунды. второй. Хуже того, контур заземления, влияющий на дозирование топлива или время зажигания, может разрушить двигатель.

Мои проблемы с Послепродажная система EFI является хорошим примером ошибки контура заземления, угрожающей ресурс двигателя.

Высокая чувствительность к малым уровням напряжения лежит в основе шум или гудение контура заземления звука.

Вторая проблема - повреждение оборудования. Из-за плотного упаковка, современная аудиоэлектроника часто использует небольшие проводники из фольги и текущие чувствительные компоненты. Полупроводники малой мощности могут быть непоправимо повреждены несколькими вольтами или несколькими тысячными долями напряжения. амперный ток.Как и в случае с домашними компьютерами и автомобилями, контур заземления может расплавить следы фольги, повредить полупроводники или микросхемы или разрушить небольшие резисторы или конденсаторы. Дорогой аудиокомпонент может быть испорчен доли секунды.

Когда я начал заниматься радиовещанием, наземные пути между различными частями аудиооборудования были изолированы. Инженеры заземлили щиты на симметричных линиях в одной точке пути, обычно на терминалах входного порта. Экраны на несимметричных линиях, если только оборудование не было установлено в одной стойке, были с одной стороны плавает изолирующий трансформатор.

Единственными общими соединениями шасси были провода питания, радио частотные основания и основания безопасности. Экраны заземления звуковых сигналов или сигналов низкого уровня были всегда изолирован от шасси или заземления на одном конце. Это верно для всех низкоуровневых сигнальные линии. Изоляция предотвратила нежелательные сигналы контура заземления, обычно проявляющиеся в виде гула или шума, из-за фоновый мусор. Было очень плохой практикой балансировать и заземлять шасси постоянного тока. несбалансированные линии, особенно линии с экраном толщиной менее нескольких слоев кожи или чрезмерно резистивные экраны более чем в одной точке кабельной трассы.

Аналоговые измерения низкого уровня и сигнальные заземления также нарушены землей петли. Как правило, по крайней мере один конец участка должен быть независимым от земли или земля изолирована. Это предотвратит нарушение критического сигнала контурами заземления. напряжения и выдача ложных показаний.

Самый простой контур заземления показан ниже:

Если мы рассмотрим систему постоянного тока с "A" как источник и «B» в качестве нагрузки, напряжение «C» подтолкнет «B -» вверх на.5 вольт. Это означает, что разница между плюсом и минусом "B" будет 2,5 вольта.

И наоборот, если "B" был источником 2,5 В, а "A" нагрузка, "C" подтолкнет "A -" к более отрицательному значению, а разница "A" между + и - будут 3 вольта.

Вот почему мы должны быть уверены, что ничто не заставляет внешнее напряжение на заземляющем проводе. Единственный способ исключить возможность заземления петля, нарушающая чувствительное напряжение или даже вызывающая повреждение, будет плавать один или оба конца системы полностью от земли.Хотя бы один конец, либо конец источника или конец нагрузки должен быть в дифференциальном режиме. «Дифференциальный» означает, что касается только разницы напряжений между + и -, а не внешней источник. Если поместить один конец в дифференциал, он будет выглядеть так:

В приведенном выше случае "B -" будет иметь единственный точка заземления. В точке «А -» не могло быть земли. Не заземляя любой конец отрицательный и создание дифференциала нагрузки или источника устраняет контур заземления.

Решение проблемы с контуром заземления путем изготовления заземляющего проводника больше, как правило, не лучший способ что-то делать, хотя, безусловно, помочь, уменьшив падение напряжения (уменьшив импеданс тракта).Проблема в том, что проводники, какими бы большими они ни были, всегда есть неизбежное падение напряжения с током. Это падение напряжения определяется законом Ома, где ток, умноженный на сопротивление, - это падение напряжения на пути тока. Если проводник передает высокочастотные сигналы, вопрос осложняется сопротивлением и эффекты стоячей волны. Для большинства систем аудио, питания и управления мы можем просто рассмотреть сопротивление. Для более высоких частот или резко возрастающих форм волны (например, зажигания системные импульсы), мы должны учитывать реактивные части импеданса проводки.

Системы со смесью больших токов и чувствительных линии нижнего уровня доставляют гораздо больше хлопот, чем другие системы. Сильные токи могут легко создавать перепады напряжения, которые составляют значительную часть низкого сигнала уровни. Когда системы высокого и низкого уровня имеют общую основу, падение текущего напряжения по заземляющей или нейтральной проводке может передаваться на другие наземные пути. Это передает часть высокого тока в низкий система уровней.

В схемах ниже, даже с тысячными долями Ом сопротивление проводника и соединения, сильноточная цепь заземления Падение на 1/10 вольт.Сигнальный провод, даже с проводом гораздо меньшего размера, имеет только падение на несколько милливольт. Это потому, что ток нагрузки очень низкий.

Давайте рассмотрим несколько основных несбалансированных систем. В этих схемах:

R1 - R4 сигнальный провод и сопротивления соединений
R5 индикатор или сопротивление нагрузки
R6 Сильноточная нагрузка
R7-R10 Сопротивление проводника сильноточной нагрузки
VS1 Источник сигнала
VS2 Источник для сильноточной нагрузки

В системе ниже мы видим напряжение сигнала, на которое ничего не влияет, кроме небольшое падение напряжения в сигнальных проводниках.Нет тока нагрузки большой мощности и нет контура заземления.

В системе ниже общий провод заземления между верхней и нижней нейтралью. был добавлен в левом конце. Мы видим, что на напряжение сигнала ничего не влияет, кроме небольшое падение напряжения в сигнальных проводниках. Нет контура заземления и нет высокого сила тока нагрузки. Датчик низкого уровня считывает только 0,004 В от источник.

В системе ниже мы видим напряжение сигнала, на которое ничего не влияет, кроме небольшое падение напряжения в сигнальных проводниках.В R6 ток нагрузки 118 ампер, но ток не влияет на напряжение сигнала, потому что заземление сигнала у свинца только одна земля точка. Нет контура заземления.

В системе ниже мы видим, что напряжение сигнала сильно зависит от высокого текущая нагрузка. Это связано с тем, что в вышеупомянутой системе есть контур заземления. Сигнал провод заземлен с каждого конца.

В системе ниже тяжелая заземляющая шина с очень низким сопротивлением была добавлена ​​в попытаться уменьшить сопротивление шасси или нейтрального тракта.Хотя снижается, напряжение сигнала остается под влиянием падения напряжения в верхнем токопроводы. Этот пример демонстрирует, почему лучшее решение - избегать контуров заземления, вместо того, чтобы пытаться ослабить контуры заземления за счет лучшего заземления между точками заземления системы.

Автостоянка в Типичные легковые автомобили unibody - это особая ситуация. Механический строительные методы, которые делают платформу жесткой, также работают для формирования большого тракт заземления шасси большой площади с очень низким сопротивлением.Сварная оболочка образует заземляющий провод с очень низким сопротивлением и является отличным местом для заземление для сигнального и силового заземления. Хотя сопротивление не нулевое, Оболочка тела - самое близкое к нему. Использование четырехпроводного измерения сопротивления Мой Мустанг 1989 года измеряет менее 0,002 Ом от заземления задней батареи. к земле рельса рамы переднего внутреннего крыла. Это приблизительный эквивалент 15 футов медного провода и разъемов AWG № 0. Большая часть этого сопротивления концентрируется вокруг клемм заземления (до того, как ток сможет распространение), а не по пути тела.Если я улучшил точки подключения, я может значительно уменьшить небольшое сопротивление моей системы сейчас. Это не совсем необходимо, так что я не заморачивался.

Нет смысла запускать тяжелый медный минус от двигатель к батарее, когда шасси уже есть и корпус, включая потери при случайном подключении, имеет меньшее сопротивление, чем хорошо сделанный кабель.

Пример заземления сопротивление:

Сопротивление любого однородного проводника обратно пропорционально площади поперечного сечения и прямо пропорционально к удельному сопротивлению и длине.Проще говоря, если мы удвоим крест площадь сечения проводника мы сокращаем сопротивление (и падение напряжения) в половина. Если мы удвоим длину, мы удвоим сопротивление и удвоим падение напряжения.

Медный провод номер 1 AWG имеет эффективный диаметр около 0,3. дюймов. Площадь круга равна пи * р в квадрате. У этого провода был бы крест площадь сечения около пи * 0,15 * 0,15 = 0,071 квадратного дюйма.

Предположим, что толщина стального корпуса составляет около 16 калибра, или около 0,06. дюймов толщиной.Площадь в один фут будет иметь 12 * 0,06 = 0,72 кв. дюймы площади поперечного сечения. Физическое сечение около десяти раз больше, чем площадь поперечного сечения медного провода.

Удельное сопротивление стали около 15 Ом на 10-6 см. В удельное сопротивление меди 1,7 Ом на 10-6 см. Мы можем разумно предположить сталь имеет примерно 15 / 1,7 = 8,8-кратное сопротивление меди для того же длина и одинаковая площадь поперечного сечения. Пока корпус корпуса выше материал удельного сопротивления, тело также имеет гораздо большее поперечное сечение площадь.

Это означает стальной корпус шириной в один фут, если этот корпус толщиной всего 0,06 дюйма, сопротивление примерно на 10% меньше, чем у аналогичного длина пути через медный провод. Легко понять, почему наземный путь через кузов автомобиля, который, вероятно, несколько футов шириной и намного толще во многих областях это малая часть сопротивления медного провода.

Поверхность пола шириной четыре фута и толщиной всего 0,06 дюйма, будет иметь поперечное сечение около 2.88 квадратных дюймов. Эквивалент медный проводник должен быть 2,88 / 8,8 = 0,327 квадратных дюйма, или диаметр = 2 * квадрат A / pi, или 0,645 дюйма в диаметре! Сопротивление тонкой стальной напольной кастрюли шириной 4 фута с медный кабель требует кабеля больше 4/0, и у нас даже нет рассчитывал на помощь каркасных реек, рокеров или дорожек на крыше!

Давайте посмотрим, почему Ford сделал систему определенным образом и как схемы могут вводить в заблуждение.Это схема отрицательного вывода аккумуляторного кабеля. Фокс Мустанги:

Правильная схема вышеуказанного:

В системе, описанной выше, отрицательный вывод EEC не заземлен на отрицательный полюс аккумулятора. Отрицательный EEC фактически подключается к шасси автомобиля рядом с пусковым реле, где он имеет общую точку заземления шасси с отрицательной клеммой аккумулятора. Основания как это работает только тогда, когда аккумулятор установлен спереди и сделан точно так, как изначально сделано.Эта система приемлема, потому что:

1.) Мустанг изначально имел довольно низкое потребление тока от система зарядки.

2.) Заземлил блок от головы до файрволла.

3.) Очень короткий и тяжелый провод аккумулятора был надежно подключен. к блоку.

Схема альтернативного метода для передней батареи во избежание контуров заземления:

Задний аккумулятор для предотвращения опасности возгорания контура заземления и заземляющего провода:

Соединения отрицательного полюса батареи:

С аккумулятором на задней панели нет причин долго работать отрицательные выводы от ничего к аккумулятору.Исключение составляют некоторые устройства зоны багажника с плавающей площадкой, например, топливные насосы или другие электродвигатели. Это предполагает цельный автомобиль или раму большой площади. со сварной конструкцией в качестве шины заземления. В Европе основания для отрицательные клеммы АКБ для средств связи запрещены из-за пожара и угрозы безопасности.

Устройство с аккумулятором сзади Всегда допустимо до нег пост Допустимо, но часто нежелательно Никогда не допустимо к отрицательному сообщение
Усилитель с общим минусом на корпус и домкраты х
Усилитель с минусом с плавающей запятой шкаф и домкраты Х * Х **
Электродвигатель или насос с изолированным земля Х * Х **
Блок зажигания с минусовой общей к корпус или другие провода х
Инвертор мощности с отрицательным общим выводом до жилья и торговых точек х
Инвертор мощности с отрицательным изолирован от шкафа и домкратов х
Радиосистема, включая стереосистемы и системы двусторонней связи с общим минусом шкаф и домкраты х
Радиосистема, включая стереосистемы и системы двусторонней связи с минусом, изолированным от шкафа и розеток Х * х *

* если рядом с аккумулятором ** если далеко от аккумулятор

С аккумулятором, устанавливаемым спереди, прочный заземленные устройства вообще может быть подключен к минусовой батарее практически любым способом.

Устройство, с аккумулятором спереди Всегда допустимо до нег пост Допустимо, но обычно нежелательно Никогда не допустимо к отрицательному сообщение
Усилитель с общим минусом к шкафу и домкраты х
Усилитель с минусом с плавающей запятой шкаф и домкраты Х * Х **
Электродвигатель или насос с изолированным земля Х
Блок зажигания с минусовой общей к корпусу или другим проводам х
Инвертор мощности с отрицательным общим выводом к шкафу и розеткам х
Инвертор мощности с отрицательным изолирован от шкафа и домкратов Х
Радиосистема, включая стерео и двустороннюю с общим минусом к корпусу и гнездам х
Радиосистема, включая стерео и двустороннюю с минусом, изолированным от шкафа и розеток Х

.

Как решить проблемы с электрическим контуром заземления?

Формальное определение контура заземления, которое является очень общим, дается в IEEE Std. 100-1991, словарь IEEE следующим образом:. . . контур заземления «образуется, когда две или более точек в электрической системе, которые номинально имеют потенциал земли, соединены токопроводящей дорожкой, так что одна или обе точки не имеют одинакового потенциала». Хотя это хорошее определение общего назначения, оно недостаточно специфично для использования при работе с цепями уровня сигнала и заземляющими соединениями.Поэтому более конкретное и полезное определение, представленное в этом документе, выглядит следующим образом:

Контур заземления (нежелательный)

Любой токопроводящий путь, включающий «землю» через заземляющий проводник или саму землю, через который проходит любая часть или весь ток процесса желаемого сигнала, так что он может быть алгебраически добавлен к любому нежелательному току, например, к «шуму». которые также могут проходить по общему наземному пути.

Контур заземления (желательный)

Любое количество параллельно включенных проводников и соединений, включающих заземленные или заземляющие проводники любого типа или землю, через которые предполагается провести замыкание на землю в системе переменного тока или токи молнии с целью уменьшения электрической дуги, опасности прикосновения и средство для устранения неисправностей.

Контур заземления (доброкачественный)

Либо из двух вышеупомянутых контуров заземления, либо их комбинации, где, несмотря на наличие контура заземления, не создается никаких электрических опасностей и никакие процессы сигнала не нарушаются из-за его существования.

Поскольку нас беспокоит нежелательное влияние контуров заземления на сигналы, мы в основном будем использовать первое из приведенных выше определений.

Сигналы, которые передаются по изолированным симметричным парам, не связаны с землей, а дифференциально связанные сигналы, которые относятся к земле, относительно невосприимчивы к проблемам, связанным с заземлением, с которым они связаны.

В этих схемах нас интересуют только напряжения относительно земли, которые достаточно высоки, чтобы вызвать пробой напряжения систем изоляции или электронных компонентов или насыщать магнитные поля, которые могут использоваться для изоляции и передачи сигнала между сигнальным кабелем и используемой электроникой. управлять или принимать сигнал на пути.

Несимметричные сигналы относительно земли делятся на две основные категории:
  1. Есть такие, которые обычно используют коаксиальный кабель только с одним центральным проводником для процесса передачи сигнала, и где внешняя оплетка заземлена с обоих концов.Сюда входят многие виды схем, используемых с компьютерами, системами управления технологическими процессами и подобными установками.
  2. Есть такие, в которых используется заземленный общий провод, как часть пути возврата сигнала для одного или нескольких сигналов в многожильном кабеле. Стандартный протокол передачи сигналов RS-232 обычно попадает в эту категорию.

В обоих вышеупомянутых примерах, если нежелательный ток возникает в заземленном проводнике, который также несет сигнал, и если есть перекрытие между полосой частот мешающего сигнала и желаемого, то процесс сигнала почти наверняка прерываться, как только помехи достигают минимального уровня амплитуды.

Обычно существуют два основных средства решения проблемы контура заземления:

(1) Измените протокол сигнала с помощью преобразователя на тот, который не использует «заземляющий» путь для любого тока сигнала, или;

(2) Шунтируйте концы кабеля, включенные в контур заземления, эффективно подключив оборудование на каждом конце кабеля к одному и тому же SRG. Это значительно снижает влияние шумового тока в тракте проводника сигнала, обеспечивая множество параллельных путей для его прохождения через низкоомный SRG.

Однако полезный сигнал будет оставаться относительно равномерно разделенным между двумя сигнальными проводниками на кабеле и не попадать в SRG. Это происходит из-за того, что взаимно связанные поля от тесно связанных питающих и обратных проводников в кабеле и для сигнала действуют, чтобы сделать этот путь гораздо более низким импедансом для прохождения сигнальных токов, чем SRG.

Наша рекомендация - правильно спроектировать и внедрить систему заземления объекта, чтобы избежать его нежелательного вмешательства в работу оборудования.Такой подход может также устранить необходимость в рассмотрении модификаций оборудования и проведении дорогостоящей диагностики, поскольку большинство проблем, связанных с синфазным шумом, устраняется в сигнальных цепях. Правильно установленный SRG вместе с хорошими практиками подключения является рекомендуемым методом минимизации проблем с синфазным шумом, поэтому в таких случаях он становится первой линией защиты.

Хотя может быть правдой, что конструкция такого типа на основе SRG является одновременно консервативной и несколько более дорогостоящей (изначально), чем другие широко используемые методы подключения, наш опыт ясно показывает, что использование подхода SRG дает лучшие и, в конечном итоге, более дорогие - эффективные результаты из-за отсутствия последующих операционных проблем.Другими словами, консервативный дизайн с использованием SRG стоит немного дороже, но позволяет избежать множества очень сложных и потенциально дорогостоящих проблем после того, как работа будет выполнена.

Как решить проблемы с электрическим контуром заземления?

В сложных системах с взаимосвязанными проводниками данных и сигналов, как правило, невозможно избежать контуров заземления.

Некоторые подходы, которые могут использоваться для предотвращения вредного воздействия таких контуров заземления, включают:

Пункт № 1

Где это возможно, кластер взаимосвязанного электронного оборудования в области, которая обслуживается опорной сеткой одного сигнала (SRG).Если соединенное между собой оборудование расположено в отдельных, но смежных помещениях, то общая опорная сетка сигналов должна обслуживать все помещения.

Пункт № 2

Эффективно прикрепите каждую раму / корпус подключенного оборудования к SRG. Таким образом, SRG действует как единообразно совместно используемый источник заземления, который поддерживает очень низкий импеданс в очень широком диапазоне частот. Обычно от постоянного тока до нескольких десятков МГц, например.

Пункт № 3

Если рабочая зона существует и ее компьютер подключен к сети, держите все оборудование рабочей зоны (например,(например, ЦП, монитор, принтер, внешний модем и т. д.) тесно сгруппированы и питаются от выделенной ответвительной цепи рабочей области. Если требуется использовать более одной ответвленной цепи для питания рабочей зоны, убедитесь, что оба питаются от одной панели. Избегайте подключения любого другого оборудования к ответвленной (ым) цепи (ам), используемой оборудованием рабочей зоны.

Пункт № 4

Используйте волоконно-оптические тракты для каналов передачи данных. Лучшее, но и самое дорогое решение - использовать волоконно-оптические кабели для всех цепей передачи данных, поскольку в цепях такого типа не может быть контуров заземления (или проблем с импульсным током).

Однако из-за увеличения начальной стоимости и дополнительной сложности использование волоконно-оптических кабельных цепей обычно (и, к сожалению) рассматривается как последнее средство. Вместо этого его следует рассматривать как важную первую стратегию, позволяющую избежать проблем, решение которых в конечном итоге может стоить дороже.

Пункт № 5

Используйте оптоизоляторы, которые могут обеспечить изоляцию в несколько кВ для тракта данных, на котором они используются. Они доступны как дополнительные преобразователи протоколов передачи данных для наиболее популярных типов каналов передачи данных.

Это очень полезный вариант модернизации для цепей данных, подверженных скачкам напряжения и контурам заземления. В этих цепях также рекомендуется применять устройства защиты от перенапряжения (SPD), если требуется защита от более высоких напряжений, связанных с большими токами.

Пункт № 6

Другие формы преобразователей протоколов могут применяться к стандартным формам сигнальных цепей, чтобы сделать их менее восприимчивыми к синфазному шуму на заземляющих проводниках, связанных с трактом прохождения сигнала.Например, преобразование с RS-232 в RS-422 или RS-485 и т. Д. Следует рассматривать в особенно шумной среде.

Пункт № 7

Улучшите экранирование кабелей передачи данных. Поместите кабели в хорошо заземленные металлические каналы или аналогичные кабельные каналы.

Пункт № 8

Следуйте рекомендациям по установке сигнальных кабелей в IEEE Std. 1100, Рекомендуемая практика для питания и заземления чувствительного электронного оборудования.

Оборудование, соединенное кабелями передачи данных и расположенное на разных этажах или находящееся на большом расстоянии друг от друга в здании, может быть не в состоянии эффективно использовать некоторые или все вышеперечисленные решения, за исключением тех, которые включают оптическую изоляцию и некоторые методы преобразования протоколов.Это происходит из-за того, что оконечное оборудование для сигнальных кабелей, вероятно, будет получать питание от разных ответвлений, щитков и даже отдельно созданных систем переменного тока. Следовательно, соответствующие опорные точки заземления оборудования, вероятно, будут иметь разный потенциал, по крайней мере, время от времени.

Хотя лучшее решение в вышеуказанной ситуации включает использование волоконно-оптических методов или методов оптоизоляции, часто можно достичь хороших характеристик, обеспечив каждое из отдельных мест с помощью SRG, а затем соединяя SRG с большим расстоянием друг от друга и с несколькими заземлениями. / соединительные проводники, металлические кабельные лотки со сплошным дном, кабельные каналы или кабелепроводы, содержащие сигнальные кабели данных.

Примером использования широко разнесенных заземляющих / соединительных проводов для соединения двух зон SRG является доступность конструкционной строительной стали и ее использование в этой роли.

Поскольку колонны из конструкционной стали устанавливаются на стандартных расстояниях в данном здании, эти колонны обычно можно использовать для этой цели. Необходимо большое расстояние, поскольку задействованные проводники являются индукторами, а взаимная индуктивность между такими проводниками, которые не разнесены широко, довольно высока.Это заставляет несколько близко расположенных проводников выглядеть как один индуктор, а не как параллельные индуктивности, которые демонстрируют более низкое общее реактивное сопротивление между элементами, которые они используются для соединения.

Кроме того, каждая из вышеупомянутых отдельных областей оборудования, содержащих SRG, должна получать питание от локально установленного и привязанного к SRG изолирующего трансформатора, в отличие от их питания от щитков и фидеров от какого-либо удаленного источника питания.

Наконец, поскольку отдельные участки в здании подвержены большим перепадам потенциалов из-за токов разряда молнии и некоторых форм замыканий на землю в системе переменного тока, концы сигнальных кабелей всегда должны быть оборудованы устройствами защиты от перенапряжения (SPD).

У вас проблемы с заземлением? Поделись с нами.

Артикул: erico

Читать дальше:
.

Как сделать ваш цикл Pandas в 71803 раза быстрее | Бенедикт Дросте

Если вы используете Python и Pandas для анализа данных, то вскоре вы захотите использовать цикл в первый раз. Однако даже для небольших DataFames использование стандартного цикла занимает много времени, и вы быстро поймете, что для больших DataFrames это может занять много времени. Когда я впервые ждал выполнения кода более получаса, я искал альтернативы, которыми хотел бы поделиться с вами.

DataFrames - это объекты Pandas со строками и столбцами.Если вы используете цикл, вы будете перебирать весь объект. Python не может использовать какие-либо встроенные функции и работает очень медленно. В нашем примере мы получили Dataframe с 65 столбцами и 1140 строками. Он содержит результаты футбольных матчей за сезоны 2016–2019 гг. Мы хотим создать новый столбец, в котором будет указано, сыграла ли конкретная команда вничью. Мы могли бы начать так:

Так как мы получили каждый матч Премьер-лиги в нашем DataFrame, мы должны проверить, играла ли интересующая команда (Арсенал), и если это применимо, были ли они домашней или гостевой командой.Как видите, этот цикл был очень медленным и выполнялся за 20,7 секунды. Давайте посмотрим, как мы можем быть более эффективными.

В первом примере мы перебрали весь DataFrame. iterrows () возвращает Series для каждой строки, поэтому он выполняет итерацию по DataFrame как пару индекса и интересующие столбцы как Series. Это делает его быстрее, чем стандартный цикл:

Для выполнения кода потребовалось 68 миллисекунд, что в 321 раз быстрее, чем у стандартного цикла. Однако многие люди не рекомендуют его использовать, потому что есть еще более быстрые варианты, а iterrows () не сохраняет типы dtypes по строкам.Это означает, что если вы используете iterrows (), в вашем DataFrame dtypes можно изменить, что может вызвать множество проблем. Сохраняйте типы данных, вы также можете использовать itertuples () . Мы не будем здесь вдаваться в подробности, потому что хотим обратить внимание на эффективность. Здесь вы можете найти официальную документацию:

apply не быстрее сам по себе, но имеет преимущества при использовании в сочетании с DataFrames. Это зависит от содержимого выражения apply . Если его можно выполнить в пространстве Cython, apply будет намного быстрее (как здесь).

Мы можем использовать apply с функцией Lambda . Все, что нам нужно сделать, это указать ось. В этом случае мы должны использовать axis = 1 , потому что мы хотим выполнить операцию по столбцам:

Этот код даже быстрее, чем предыдущие методы, и для его завершения потребовалось 27 миллисекунд.

Теперь мы можем перейти к новой теме. Мы используем преимущества векторизации для создания действительно быстрых кодов. Смысл в том, чтобы избежать циклов на уровне Python, как в примерах до [1], и использовать оптимизированный код C, который использует память намного эффективнее.Нам просто нужно немного изменить функцию:

Теперь мы можем создать с использованием серии Pandas в качестве входных данных новый столбец:

В этом случае нам даже не нужен цикл. Все, что нам нужно сделать, это настроить содержимое функции. Теперь мы можем напрямую передать серию Pandas нашей функции, что приводит к огромному увеличению скорости.

В предыдущем примере мы передали в нашу функцию серию Pandas. Добавляя .values, мы получаем массив Numpy:

Массивы Numpy работают так быстро, потому что мы получили преимущества локальности ссылки [2].Наш код выполнялся за 0,305 миллисекунды и был в 71803 раза быстрее, чем стандартный цикл, использованный в начале.

Если вы используете Python, Pandas и Numpy для анализа данных, всегда найдется место для улучшения вашего кода. Мы сравнили пять различных методов добавления нового столбца в наш DataFrame на основе некоторых вычислений. Мы заметили огромную разницу в скорости:

.

Смотрите также