Как объясняется нейтрализация зарядов проводящих тел при их заземлении


Как земля проводит ток и почему заземление всё-таки работает: разгадка секрета | Полезные статьи

Заземление – одно из базовых понятий в электротехнике. С его помощью осуществляется принудительное замыкание токопроводящих частей электроустановки в землю. Это обязательное требование для ее безопасной эксплуатации.

Как работает заземление?

Принцип работы заземления базируется на следующих утверждениях:

  1. Нельзя полностью избежать пробоя изоляции на корпус электроустановки, а также значительно уменьшить ее сопротивление.
  2. Когда потенциал затрагивает корпус, это невозможно определить по внешним параметрам.
  3. Если в этом случае человек дотронется до корпуса электроустановки, он окажется под воздействием высокого потенциала.
  4. В данной ситуации электрический ток проходит через тело человека от проводящей поверхности к земле, что опасно для жизни.
  5. Чтобы избежать этой опасности, необходимо достичь разности потенциалов между приводящей поверхностью и землей. Для этого следует при помощи провода с небольшим сопротивлением соединить с землей части корпуса, выполненные из металла.

Благодаря этому в случае пробоя изоляции основной ток уйдет в землю, не затрагивая тело человека.

Почему земля обладает низким сопротивлением?

Закон Ома гласит, что ток во всех случаях протекает по замкнутому контуру. То есть ток движется через электроустановку с подключенной к ней системой заземления от одного из полюсов электростанции до заземляющего электрода. Небольшое заземление всей конструкции не гарантирует малое сопротивление обратной ветви цепи. Почва обладает достаточно большим удельным сопротивлением, поэтому кажется, что тело человека не становится дополнительным элементом заземления.


Стоит учитывать, что сопротивление обратной ветви контура заземления будет небольшим, поскольку между заземляющими электродами электроустановки и электростанции сечение среды очень велико. 

Благодаря этому система заземления не только обеспечивает отличную защиту и надежность без обрывов, но и позволяет избежать прокладки доп.кабеля для коммутации соединителей электростанции и объекта. 

Что еще нужно знать о заземлении?

Важно понимать, что для качественной работы системы заземления необходимо, чтобы переходной сопротивление, возникающее между землей и заземляющий электродом, было невелико. Этого можно достигнуть благодаря большой площади контакта (для этого выполняют сварку крепко скрепленных друг с другом пластин), а также с помощью установки электродов в грунте ниже глубины его промерзания, поскольку в этом случае его удельное сопротивление резко увеличивается. С реализацией данной задачи отлично справляются вертикальные заземлители.


Сопротивление человеческого тела равняется нескольким сотням Ом, поэтому максимально допустимое сопротивление системы заземления не может составлять более 4 Ом. 

Как нейтрализовать заряд объекта, который нельзя заземлить

В предыдущем посте мы узнали, что в зоне, защищенной от электростатического разряда (EPA), все поверхности, предметы, люди и устройства, чувствительные к электростатическому разряду (ESD), имеют одинаковый электрический потенциал. Мы достигаем этого, используя только «заземляемые» материалы или. Но что делать, если вам абсолютно необходим предмет в вашем EPA, и его нельзя заземлить? Не переживайте, не вся надежда потеряна! Есть несколько вариантов, которые позволят вам использовать рассматриваемый предмет.Поясним…

Проводники и изоляторы

В ESD Control мы различаем проводников и изоляторов . Материалы, которые легко переносят электроны, называются проводниками . Некоторыми примерами проводников являются металлы, углерод и слой пота человеческого тела.

Заряженный проводник может переносить электроны, что позволяет ему быть заземленным

Материалы, которые не переносят электроны легко, называются изоляторами и по определению являются непроводящими.Некоторые известные изоляторы - это обычные пластмассы и стекло.

Изоляторы удерживают заряд, их нельзя заземлить и «отводить» заряд.

Как проводники, так и изоляторы могут заряжаться статическим электричеством и разряжаться. Электростатические заряды можно эффективно снять с проводников, заземлив их. Однако заземленный элемент должен быть токопроводящим или рассеивающим. С другой стороны, изолятор будет удерживать заряд и не может быть заземлен и «отводит» заряд.

Проводники и изоляторы в EPA

Первые два фундаментальных принципа ESD Control:

  1. Заземлите все проводники, включая людей.
  2. Снимите все изоляторы.

Для достижения №1 все поверхности, продукты и люди связаны с землей. Связывание означает соединение, обычно через сопротивление от 1 до 10 МОм. Ремешки для рук и коврики для рабочей поверхности - одни из наиболее распространенных устройств, используемых для снятия статических зарядов.Браслеты отводят заряд от операторов, а правильно заземленный коврик обеспечит заземление для незащищенных устройств, чувствительных к электростатическому разряду. Подвижные предметы (например, контейнеры и инструменты) скрепляются путем нахождения на скрепленной поверхности или удерживания связанным человеком.

Однако что, если рассматриваемый статический заряд находится на чем-то, что нельзя заземлить, например, на изоляторе? Затем вступит в силу № 2 наших принципов управления электростатическим разрядом. Согласно стандарту ESD «» все второстепенные изоляторы и предметы (пластмассы и бумага), такие как кофейные чашки, пищевые обертки и личные вещи, должны быть удалены с рабочей станции или любых других операция, в которой работают с незащищенными ESDS. Угроза электростатического разряда, связанная с важными для процесса изоляторами или источниками электростатического поля , должна быть оценена, чтобы убедиться, что:

  • электростатическое поле в месте работы с ESDS не должно превышать 5 000 В / м;

или

  • Если электростатический потенциал, измеренный на поверхности технологического изолятора, превышает 2 000 В, объект должен находиться на расстоянии не менее 30 см от ESDS; и
  • Если электростатический потенциал, измеренный на поверхности технологического изолятора, превышает 125 В, объект должен находиться на расстоянии не менее 2,5 см от ESDS.”

[IEC 61340-5-1: 2016 пункт 5.3.4.2 Изоляторы]

Всегда держите изоляторы на расстоянии не менее 31 см от предметов ESDS

Изоляторы, необходимые для процесса

Ну, все мы знаем, что в жизни нет ничего черного и белого. Было бы легко просто следовать приведенным выше «правилам» и Боб - ваш дядя, но, к сожалению, это не всегда возможно. Бывают ситуации, когда упомянутый изолятор является предметом, используемым на рабочем месте, например ручным инструментом.Они необходимы - вы не можете просто выбросить их из EPA. Если вы это сделаете, работа не будет выполнена.

Итак, возникает вопрос - как «удалить» эти жизненно важные изоляторы, фактически не «удаляя» их из своего EPA? Сначала вы должны попробовать 2 варианта:

1. Замените обычные изоляционные предметы на антистатическую версию. Имеется множество инструментов и принадлежностей, защищенных от электростатического разряда - от обработки документов до чашек и диспенсеров, щеток и мусорных баков. Они являются проводящими или рассеивающими и заменяют стандартные изолирующие разновидности, которые обычно используются на рабочем месте.Для получения дополнительной информации об использовании ESD-безопасных инструментов и аксессуаров, проверьте этот пост.

2. Периодически наносите слой Topical Antistat. Reztore® Topical Antistat (или аналогичный раствор) предназначен для использования на поверхностях без ESD. После нанесения и высыхания поверхности остается антистатическое и защитное антистатическое покрытие. Покрытие, рассеивающее статическое электричество, позволяет заряду стекать при заземлении. Антистатические свойства снижают трибоэлектрическое напряжение до менее 200 вольт.Таким образом, он придает поверхностям электрические свойства без электростатического разряда до тех пор, пока твердое покрытие не изнашивается.

Если эти два варианта неприменимы для вашего приложения, изолятор называют «необходимым для процесса», и поэтому нейтрализация с помощью ионизатора должна стать необходимой частью вашей программы управления электростатическим разрядом.

Нейтрализация

На большинстве рабочих станций ESD есть изоляторы или изолированные проводники, которые нельзя удалить или заменить. Их следует решать с помощью ионизации.Примерами некоторых распространенных основных изоляторов технологического процесса являются подложка для печатных плат, изолирующие испытательные приспособления и пластиковые корпуса изделий.

Изоляторы для электронных шкафов необходимы для производства

Примером изолированных проводов могут быть токопроводящие дорожки или компоненты, установленные на печатной плате, которая не контактирует с рабочей поверхностью ESD.

Ионизатор создает большое количество положительно и отрицательно заряженных ионов. Вентиляторы помогают ионам течь по рабочей зоне.Ионизация может нейтрализовать статические заряды на изоляторе за считанные секунды, тем самым уменьшая их возможность вызвать повреждение электростатическим разрядом. Заряженные ионы, созданные ионизатором, будут:

  • нейтрализует заряды на технологических изоляторах
  • нейтрализует заряды на второстепенных изоляторах
  • нейтрализует изолированные проводники
  • минимизировать трибоэлектрический заряд

Изоляторы и изолированные проводники широко используются в устройствах, чувствительных к электростатическому разряду (ESDS) - ионизаторы могут помочь

Сводка

Изоляторы по определению не являются проводниками и поэтому не могут быть заземлены.Изоляторы можно контролировать, выполнив следующие действия в EPA:

  • Всегда держите изоляторы на расстоянии не менее 31 см от предметов ESDS или
  • Замените обычные изоляционные элементы на антистатическую версию или
  • Периодически наносите слой Topical Antistat

Когда ничего из вышеперечисленного невозможно, изолятор называют «важным для процесса», и поэтому нейтрализация с помощью ионизатора должна стать необходимой частью вашей программы управления электростатическим разрядом.

.

Клетка: типы, функции и органеллы

Человек состоит из триллионов клеток - основной единицы жизни на Земле. В этой статье мы объясняем некоторые структуры, обнаруженные в клетках, и описываем некоторые из многих типов клеток, обнаруженных в нашем организме.

Ячейки можно рассматривать как крошечные упаковки, содержащие крошечные фабрики, склады, транспортные системы и электростанции. Они функционируют сами по себе, создавая свою собственную энергию и самовоспроизводясь - клетка - это наименьшая единица жизни, которая может воспроизводиться.

Однако клетки также взаимодействуют друг с другом и соединяются, образуя прочное, хорошо склеенное животное. Клетки строят ткани, из которых состоят органы; и органы работают вместе, чтобы поддерживать жизнь в организме.

Роберт Хук впервые обнаружил кельи в 1665 году. Он дал им свое название, потому что они напоминали Cella (латинское слово «маленькие комнаты»), где монахи жили в монастырях.

Различные типы клеток могут выглядеть совершенно по-разному и выполнять очень разные роли в организме.

Например, сперматозоид похож на головастика, яйцеклетка самки имеет сферическую форму, а нервные клетки - это, по сути, тонкие трубочки.

Несмотря на различия, они часто имеют общие структуры; они называются органеллами (мини-органами). Ниже приведены некоторые из наиболее важных:


Упрощенная схема клетки человека.

Ядро

Ядро можно рассматривать как штаб-квартиру клетки. Обычно на клетку приходится одно ядро, но это не всегда так, например, в клетках скелетных мышц их два.Ядро содержит большую часть ДНК клетки (небольшое количество находится в митохондриях, см. Ниже). Ядро посылает сообщения, чтобы сказать клетке расти, делиться или умирать.

Ядро отделено от остальной клетки мембраной, называемой ядерной оболочкой; Ядерные поры внутри мембраны пропускают небольшие молекулы и ионы, в то время как более крупным молекулам необходимы транспортные белки, чтобы помочь им пройти.

Плазменная мембрана

Чтобы каждая клетка оставалась отдельной от своего соседа, она окружена специальной мембраной, известной как плазматическая мембрана.Эта мембрана преимущественно состоит из фосфолипидов, которые предотвращают попадание веществ на водной основе в клетку. Плазматическая мембрана содержит ряд рецепторов, которые выполняют ряд задач, в том числе:

  • Привратники: Некоторые рецепторы пропускают одни молекулы и останавливают другие.
  • Маркеры: Эти рецепторы действуют как именные значки, информируя иммунную систему о том, что они являются частью организма, а не инородным захватчиком.
  • Коммуникаторы: Некоторые рецепторы помогают клетке общаться с другими клетками и окружающей средой.
  • Крепеж: Некоторые рецепторы помогают связывать клетку с ее соседями.

Цитоплазма

Цитоплазма - это внутренняя часть клетки, которая окружает ядро ​​и на 80% состоит из воды; он включает органеллы и желеобразную жидкость, называемую цитозолем. Многие важные реакции, происходящие в клетке, происходят в цитоплазме.

Лизосомы и пероксисомы

И лизосомы, и пероксисомы, по сути, представляют собой мешочки с ферментами.Лизосомы содержат ферменты, которые расщепляют большие молекулы, включая старые части клеток и инородный материал. Пероксисомы содержат ферменты, которые разрушают токсичные материалы, в том числе перекись.

Цитоскелет

Цитоскелет можно рассматривать как каркас клетки. Это помогает ему поддерживать правильную форму. Однако, в отличие от обычных каркасов, цитоскелет гибкий; он играет роль в делении и подвижности клеток - например, в способности некоторых клеток двигаться, например, сперматозоидов.

Цитоскелет также помогает в передаче сигналов в клетке, участвуя в поглощении материала извне клетки (эндоцитоз), и участвует в перемещении материалов внутри клетки.

Эндоплазматический ретикулум

Эндоплазматический ретикулум (ER) обрабатывает молекулы внутри клетки и помогает транспортировать их к конечному месту назначения. В частности, он синтезирует, сворачивает, модифицирует и транспортирует белки.

ER состоит из удлиненных мешочков, называемых цистернами, которые удерживаются вместе цитоскелетом.Есть два типа: грубая ER и гладкая ER.

Аппарат Гольджи

После того, как молекулы были обработаны ER, они перемещаются в аппарат Гольджи. Аппарат Гольджи иногда считают почтовым отделением ячейки, где предметы упаковываются и маркируются. Как только материалы уйдут, они могут быть использованы внутри клетки или извлечены из клетки для использования в другом месте.

Митохондрии

Митохондрии, часто называемые электростанцией клетки, помогают превращать энергию пищи, которую мы едим, в энергию, которую клетка может использовать - аденозинтрифосфат (АТФ).Однако митохондрии выполняют ряд других функций, включая хранение кальция и роль в гибели клеток (апоптоз).

Рибосомы

В ядре ДНК транскрибируется в РНК (рибонуклеиновую кислоту), молекулу, похожую на ДНК, которая несет то же самое сообщение. Рибосомы считывают РНК и переводят ее в белок, склеивая аминокислоты в порядке, определенном РНК.

Некоторые рибосомы свободно плавают в цитоплазме; другие прикреплены к ER.

Наше тело постоянно заменяет клетки.Клеткам необходимо делиться по ряду причин, включая рост организма и заполнение промежутков, оставленных мертвыми и разрушенными клетками, например, после травмы.

Есть два типа деления клеток: митоз и мейоз.

Митоз

Митоз - это то, как делится большинство клеток в организме. «Родительская» клетка делится на две «дочерние» клетки.

Обе дочерние клетки имеют те же хромосомы, что и друг друга, и родительская. Их называют диплоидными, потому что они имеют две полные копии хромосом.

Мейоз

Мейоз создает половые клетки, такие как мужские сперматозоиды и женские яйцеклетки. При мейозе небольшая часть каждой хромосомы отрывается и прикрепляется к другой хромосоме; это называется генетической рекомбинацией.

Это означает, что каждая из новых клеток имеет уникальный набор генетической информации. Именно этот процесс позволяет происходить генетическому разнообразию.

Итак, вкратце, митоз помогает нам расти, а мейоз гарантирует, что все мы уникальны.

Если учесть сложность человеческого тела, неудивительно, что существуют сотни различных типов клеток.Ниже представлена ​​небольшая подборка типов клеток человека:

Стволовые клетки

Стволовые клетки - это клетки, которым еще предстоит выбрать, какими они станут. Некоторые дифференцируются, чтобы стать клетками определенного типа, а другие делятся, чтобы произвести больше стволовых клеток. Они обнаруживаются как в эмбрионе, так и в некоторых тканях взрослого человека, например, в костном мозге.

Костные клетки

Существует по крайней мере три основных типа костных клеток:

  • Остеокласты, которые растворяют кость.
  • Остеобласты, образующие новую кость.
  • Остеоциты, которые окружены костью и помогают общаться с другими костными клетками.

Клетки крови

Есть три основных типа клеток крови:

  • красных кровяных телец, которые переносят кислород по всему телу
  • лейкоцитов, которые являются частью иммунной системы
  • тромбоцитов, которые помогают свертыванию крови для предотвращения кровопотери после травмы

Мышечные клетки

Мышечные клетки, также называемые миоцитами, представляют собой длинные трубчатые клетки.Мышечные клетки важны для огромного числа функций, включая движение, поддержку и внутренние функции, такие как перистальтика - движение пищи по кишечнику.

Сперматозоиды

Эти клетки в форме головастиков - самые маленькие в организме человека.

Они подвижны, что означает, что они могут двигаться. Они достигают этого движения с помощью своего хвоста (жгутика), который заполнен митохондриями, дающими энергию.

Сперматозоиды не могут делиться; они несут только одну копию каждой хромосомы (гаплоид), в отличие от большинства клеток, которые несут две копии (диплоид).

Женская яйцеклетка

По сравнению со сперматозоидом, женская яйцеклетка является гигантской; это самая большая клетка человека. Яйцеклетка также гаплоидна, так что ДНК сперматозоидов и яйцеклетки могут объединяться, чтобы создать диплоидную клетку.

Жировые клетки

Жировые клетки также называются адипоцитами и являются основным компонентом жировой ткани. В них хранятся жиры, называемые триглицеридами, которые при необходимости можно использовать в качестве энергии. Когда триглицериды израсходованы, жировые клетки сокращаются.Адипоциты также производят некоторые гормоны.

Нервные клетки

Нервные клетки - это коммуникационная система организма. Также называемые нейронами, они состоят из двух основных частей - тела клетки и нервных отростков. Центральное тело содержит ядро ​​и другие органеллы, а нервные отростки (аксоны или дендриты) проходят как длинные пальцы, неся сообщения в разные стороны. Некоторые из этих аксонов могут быть более 1 метра в длину.

Клетки настолько же интересны, насколько и разнообразны. В каком-то смысле они являются автономными городами, которые функционируют в одиночку, производя собственную энергию и белки; в другом смысле они являются частью огромной сети клеток, которая создает ткани, органы и нас.

.

Ваша пищеварительная система и как она работает

На этой странице:

Что такое пищеварительная система?

Пищеварительная система состоит из желудочно-кишечного тракта, также называемого желудочно-кишечным трактом или пищеварительным трактом, а также печени, поджелудочной железы и желчного пузыря. Желудочно-кишечный тракт - это серия полых органов, соединенных длинной извилистой трубкой от рта до ануса. Полые органы, составляющие желудочно-кишечный тракт, - это рот, пищевод, желудок, тонкий кишечник, толстый кишечник и задний проход.Печень, поджелудочная железа и желчный пузырь - твердые органы пищеварительной системы.

Тонкая кишка состоит из трех частей. Первая часть называется двенадцатиперстной кишкой. Тощая кишка находится посередине, а подвздошная кишка - в конце. Толстый кишечник включает аппендикс, слепую кишку, толстую и прямую кишку. Аппендикс представляет собой мешочек в форме пальца, прикрепленный к слепой кишке. Слепая кишка - это первая часть толстой кишки. Далее следует толстая кишка. Прямая кишка - это конец толстой кишки.

Пищеварительная система

Бактерии в желудочно-кишечном тракте, также называемые кишечной флорой или микробиомом, помогают пищеварению.Также помогают части вашей нервной и сердечно-сосудистой систем. Работая вместе, нервы, гормоны, бактерии, кровь и органы вашей пищеварительной системы переваривают продукты и жидкости, которые вы едите или пьете каждый день.

Почему важно пищеварение?

Пищеварение важно, потому что ваше тело нуждается в питательных веществах из пищи и напитков для правильной работы и сохранения здоровья. Белки, жиры, углеводы, витамины, минералы и вода являются питательными веществами. Ваша пищеварительная система расщепляет питательные вещества на части, достаточно мелкие, чтобы ваше тело могло их усвоить и использовать для получения энергии, роста и восстановления клеток.

  • Белки распадаются на аминокислоты
  • Жиры распадаются на жирные кислоты и глицерин
  • Углеводы распадаются на простые сахара

MyPlate предлагает идеи и советы, которые помогут вам удовлетворить ваши индивидуальные потребности в отношении здоровья.

Ваша пищеварительная система расщепляет питательные вещества на части, достаточно мелкие, чтобы ваше тело могло их усвоить.

Как работает моя пищеварительная система?

Каждая часть вашей пищеварительной системы помогает перемещать пищу и жидкость по желудочно-кишечному тракту, разбивать пищу и жидкость на более мелкие части или и то, и другое.После того, как пища будет разбита на достаточно мелкие части, ваше тело сможет усвоить и переместить питательные вещества туда, где они необходимы. Ваш толстый кишечник поглощает воду, а продукты пищеварения превращаются в стул. Нервы и гормоны помогают контролировать процесс пищеварения.

Процесс пищеварения

Орган Механизм Добавлены пищеварительные соки Разрушение частиц пищи
Горловина Жевание Слюна Крахмалы, разновидность углеводов
Пищевод Перистальтика Нет Нет
Желудок Верхняя мышца желудка расслабляется, позволяя пище поступить, а нижняя мышца смешивает пищу с пищеварительным соком Желудочная кислота и пищеварительные ферменты Белки
Тонкая кишка Перистальтика Пищеварительный сок тонкой кишки Крахмалы, белки и углеводы
Поджелудочная железа Нет Панкреатический сок Углеводы, жиры и белки
Печень Нет Желчь Жиры
Толстая кишка Перистальтика Нет Бактерии в толстом кишечнике также могут расщеплять пищу.

Как еда перемещается по моему желудочно-кишечному тракту?

Пища проходит через ваш желудочно-кишечный тракт в результате процесса, называемого перистальтикой. Большие полые органы вашего желудочно-кишечного тракта содержат слой мышц, который позволяет их стенкам двигаться. Это движение проталкивает пищу и жидкость через желудочно-кишечный тракт и перемешивает содержимое каждого органа. Мышца, стоящая за пищей, сокращается и сжимает пищу вперед, в то время как мышца перед пищей расслабляется, позволяя пище двигаться.

Пищеварительный процесс начинается, когда вы кладете пищу в рот.

Устье. Пища начинает двигаться по вашему желудочно-кишечному тракту, когда вы едите. Когда вы глотаете, ваш язык проталкивает пищу в горло. Небольшой лоскут ткани, называемый надгортанником, складывается над дыхательным горлом, чтобы предотвратить удушье, и пища попадает в пищевод.

Пищевод. Как только вы начнете глотать, процесс станет автоматическим. Ваш мозг подает сигнал мышцам пищевода, и начинается перистальтика.

Нижний сфинктер пищевода. Когда пища достигает конца пищевода, кольцеобразная мышца, называемая нижним сфинктером пищевода, расслабляется и позволяет пище попасть в желудок. Этот сфинктер обычно остается закрытым, чтобы содержимое желудка не попало обратно в пищевод.

Желудок. После того, как пища попадает в желудок, мышцы желудка смешивают пищу и жидкость с пищеварительными соками. Желудок медленно выводит свое содержимое, называемое химусом, в тонкую кишку.

Тонкая кишка. Мышцы тонкой кишки смешивают пищу с пищеварительными соками поджелудочной железы, печени и кишечника и выталкивают смесь вперед для дальнейшего переваривания. Стенки тонкой кишки поглощают воду и переваренные питательные вещества в кровоток. По мере продолжения перистальтики продукты пищеварительного процесса перемещаются в толстую кишку.

Толстая кишка. Отходы процесса пищеварения включают непереваренные части пищи, жидкости и старые клетки слизистой оболочки желудочно-кишечного тракта.Толстый кишечник поглощает воду и превращает жидкие отходы в стул. Перистальтика способствует продвижению стула в прямую кишку.

Прямая кишка. Нижний конец толстой кишки, прямая кишка, накапливает стул до тех пор, пока он не вытолкнет стул из ануса во время дефекации.

Посмотрите это видео, чтобы увидеть, как пища движется по желудочно-кишечному тракту.

Как моя пищеварительная система разбивает пищу на мелкие части, которые мое тело может использовать?

Когда пища движется по желудочно-кишечному тракту, ваши пищеварительные органы разбивают ее на более мелкие части, используя:

  • движение, такое как жевание, сжатие и перемешивание
  • пищеварительные соки, такие как желудочная кислота, желчь и ферменты

Устье. Процесс пищеварения начинается во рту, когда вы жуете. Ваши слюнные железы вырабатывают слюну, пищеварительный сок, который увлажняет пищу, благодаря чему она легче перемещается через пищевод в желудок. В слюне также есть фермент, который расщепляет крахмалы в пище.

Пищевод. После того, как вы проглотили, перистальтика выталкивает пищу по пищеводу в желудок.

Желудок. Железы в слизистой оболочке желудка вырабатывают желудочную кислоту и ферменты, расщепляющие пищу.Мышцы вашего желудка смешивают пищу с этими пищеварительными соками.

Поджелудочная железа. Поджелудочная железа вырабатывает пищеварительный сок, содержащий ферменты, расщепляющие углеводы, жиры и белки. Поджелудочная железа доставляет пищеварительный сок в тонкий кишечник по тонким трубочкам, называемым протоками.

Печень. Ваша печень вырабатывает пищеварительный сок, называемый желчью, который помогает переваривать жиры и некоторые витамины. Желчные протоки переносят желчь из печени в желчный пузырь для хранения или в тонкий кишечник для использования.

Желчный пузырь. Желчный пузырь накапливает желчь между приемами пищи. Когда вы едите, желчный пузырь выдавливает желчь через желчные протоки в тонкий кишечник.

Тонкая кишка. Тонкая кишка вырабатывает пищеварительный сок, который смешивается с желчью и соком поджелудочной железы, чтобы завершить расщепление белков, углеводов и жиров. Бактерии в тонком кишечнике вырабатывают некоторые из ферментов, необходимых для переваривания углеводов. Тонкая кишка перемещает воду из кровотока в желудочно-кишечный тракт, чтобы помочь расщепить пищу.Тонкий кишечник также поглощает воду вместе с другими питательными веществами.

Толстая кишка. В толстой кишке больше воды перемещается из желудочно-кишечного тракта в кровоток. Бактерии в толстом кишечнике помогают расщеплять оставшиеся питательные вещества и превращать витамин К. Отходы пищеварения, в том числе слишком большие части пищи, превращаются в стул.

Что происходит с переваренной пищей?

Тонкая кишка поглощает большую часть питательных веществ из пищи, а ваша кровеносная система передает их другим частям тела для хранения или использования.Специальные клетки помогают абсорбированным питательным веществам проникать через слизистую оболочку кишечника в кровоток. Ваша кровь несет в печень простые сахара, аминокислоты, глицерин, а также некоторые витамины и соли. Ваша печень накапливает, перерабатывает и доставляет питательные вещества остальному телу, когда это необходимо.

Лимфатическая система, сеть сосудов, по которым переносятся лейкоциты и жидкость, называемая лимфой, по всему телу для борьбы с инфекциями, поглощает жирные кислоты и витамины.

Ваше тело использует сахар, аминокислоты, жирные кислоты и глицерин для создания веществ, необходимых для энергии, роста и восстановления клеток.

Как мое тело контролирует процесс пищеварения?

Ваши гормоны и нервы работают вместе, чтобы помочь контролировать процесс пищеварения. Сигналы проходят по желудочно-кишечному тракту, а также взад и вперед от желудочно-кишечного тракта к мозгу.

Гормоны

Клетки, выстилающие ваш желудок и тонкий кишечник, производят и выделяют гормоны, которые контролируют работу вашей пищеварительной системы. Эти гормоны сообщают вашему телу, когда нужно производить пищеварительный сок, и посылают в мозг сигналы о том, что вы голодны или сыты.Поджелудочная железа также вырабатывает гормоны, важные для пищеварения.

Нервы

У вас есть нервы, которые соединяют вашу центральную нервную систему - головной и спинной мозг - с пищеварительной системой и контролируют некоторые пищеварительные функции. Например, когда вы видите или чувствуете запах еды, ваш мозг посылает сигнал, который заставляет ваши слюнные железы «наполнять ваш рот водой», чтобы вы приготовились к еде.

У вас также есть кишечная нервная система (ENS) - нервы в стенках желудочно-кишечного тракта.Когда пища растягивает стенки желудочно-кишечного тракта, нервы ENS выделяют множество различных веществ, которые ускоряют или замедляют движение пищи и производство пищеварительных соков. Нервы посылают сигналы для управления действиями кишечных мышц, сокращая и расслабляя их, чтобы протолкнуть пищу через кишечник.

Клинические испытания

Национальный институт диабета, болезней пищеварительной системы и почек (NIDDK) и другие подразделения Национального института здоровья (NIH) проводят и поддерживают исследования многих заболеваний и состояний.

Что такое клинические испытания и подходят ли они вам?

Посмотрите видеоролик, в котором директор NIDDK доктор Гриффин П. Роджерс объясняет важность участия в клинических испытаниях.

Какие клинические испытания открыты?

Клинические испытания

, которые в настоящее время открыты и набираются, можно просмотреть на сайте www.ClinicalTrials.gov.

.

Что такое патоген? 4 типа и пути распространения болезни

Патоген - это организм, вызывающий болезнь.

Естественно, ваше тело полно микробов. Однако эти микробы вызывают проблему только в том случае, если ваша иммунная система ослаблена или им удается проникнуть в обычно стерильную часть вашего тела.

Патогены разные и могут вызывать заболевание при попадании в организм.

Все, что патогену необходимо для процветания и выживания, - это хозяин. Как только патоген обосновывается в организме хозяина, ему удается избежать иммунных реакций организма и использовать ресурсы организма для репликации, прежде чем покинуть организм и распространиться на нового хозяина.

Патогены могут передаваться несколькими путями в зависимости от типа. Они могут распространяться при контакте с кожей, жидкостями организма, частицами в воздухе, контакте с фекалиями и прикосновением к поверхности, к которой прикасается инфицированный человек.

Существуют разные типы патогенов, но мы сосредоточимся на четырех наиболее распространенных типах: вирусах, бактериях, грибах и паразитах.

Вирусы

Вирусы состоят из фрагмента генетического кода, такого как ДНК или РНК, и защищены белковой оболочкой.После заражения вирусы проникают в клетки-хозяева вашего тела. Затем они используют компоненты клетки-хозяина для репликации, производя больше вирусов.

После завершения цикла репликации эти новые вирусы высвобождаются из клетки-хозяина. Обычно это повреждает или разрушает инфицированные клетки.

Некоторые вирусы могут некоторое время бездействовать, прежде чем снова размножаться. Когда это происходит, кажется, что человек излечился от вирусной инфекции, но снова заболевает.

Антибиотики не убивают вирусы и поэтому неэффективны при лечении вирусных инфекций.Иногда можно использовать противовирусные препараты, в зависимости от вируса.

Бактерии

Бактерии - это микроорганизмы, состоящие из одной клетки. Они очень разнообразны, имеют множество форм и особенностей и способны жить практически в любой среде, в том числе внутри и на вашем теле. Не все бактерии вызывают инфекции. Те, что могут, называются патогенными бактериями.

Ваше тело может быть более подвержено бактериальным инфекциям, когда ваша иммунная система подвергается опасности из-за вируса.Болезненное состояние, вызванное вирусом, позволяет нормально безвредным бактериям становиться патогенными.

Антибиотики используются для лечения бактериальных инфекций. Некоторые штаммы бактерий стали устойчивыми к антибиотикам, что затрудняет их лечение. По данным Всемирной организации здравоохранения (ВОЗ), это может произойти естественным путем, но также и из-за чрезмерного использования антибиотиков.

Грибы

На Земле существуют миллионы различных видов грибов. Известно, что около 300 человек вызывают болезни.Грибы можно найти практически повсюду в окружающей среде, в том числе в помещении, на открытом воздухе и на коже человека. Они вызывают инфекцию, когда разрастаются.

Клетки грибов содержат ядро ​​и другие компоненты, защищенные мембраной и толстой клеточной стенкой. Их структура может затруднить убийство.

Некоторые новые штаммы грибковых инфекций, такие как Candida aurus, оказались особенно опасными, что побудило к дальнейшим исследованиям грибковых инфекций.

Паразиты

Паразиты - это организмы, которые ведут себя как крошечные животные, живут внутри или на хозяине и питаются от хозяина или за счет него.Хотя паразитарные инфекции чаще встречаются в тропических и субтропических регионах, они могут возникать где угодно.

Три основных типа паразитов могут вызывать заболевания у человека. К ним относятся:

  • простейших, которые представляют собой одноклеточные организмы, которые могут жить и размножаться в вашем теле
  • гельминтов, которые представляют собой более крупные многоклеточные организмы, которые могут жить внутри или вне вашего тела и обычно известны как черви
  • эктопаразиты, которые представляют собой многоклеточные организмы, которые живут или питаются вашей кожей, включая некоторых насекомых, таких как клещи и комары

Они могут распространяться несколькими путями, в том числе через загрязненную почву, воду, пищу и кровь. как при половом контакте, так и при укусах насекомых.

.

Смотрите также